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 I – Problem Dataset and Description 
For our problem we decided on the POTEC dataset, which is based on the Adult dataset that 

can be found at https://archive.ics.uci.edu/ml/datasets/Adult in the UCI Machine Learning 

Repository.  Also known as the “Census Income” data set, the data set contains 32561 

individuals information along 15 variables taken from the 1994 US Census data.   

The task at hand then is to predict whether an individual’s income exceeds $50,000 dollars per 

year.  The binary target variable “target” contains values of either “<=50K” to denote the 

individual makes less than or equal to 50,000 dollars a year or ”>50K” denoting they make 

more than that amount. The target is fairly imbalanced as only 24% of the population makes 

more than 50 thousand dollars a year.  

 

The dataset variables consists of the following variables and values for each: 

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, 

Without-pay, Never-worked.  

fnlwgt: continuous (a weight originally set by initial data handlers) 

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc- acdm, Assoc-

voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. 

education-num: continuous (number of years of schooling) 

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, 

Married-spouse-absent, etc.  

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec- managerial, Prof-

specialty, Handlers-cleaners, Machine-op-inspct, Adm- clerical, Farming-fish, Transport-

moving, Priv-house-serv, Protective-serv, Armed Forces.  

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. 

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.  

sex: Male, Female 

capital-gain: continuous (per year) 

capital-loss: continuous (per year) 

hours-per-week: continuous (per week) 

native-country: United-States, Camb odia, England, Puerto-R ico, Canada , Germany, 

Outlying-US(Guam-USV I- etc), India, Japan, Greece, South, China, Cuba, Iran, 

Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, 

France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, 

Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, 

Peru, Hong, Holand- Netherlands. 

 

II- Pre-processing 

We take an initial look at our mostly categorical data and notice that three of our variables ( 

"workclass”, "occupation" & "native.country”) contain some values of “?”, so we set a new 

level of “level_NA” for each and map those values to that.   

After that we run an algorithm for outlier detection using initial mahalanobis distances 

between individuals as compared with a robust derived mahalanobis distance calculation 

between points, and obtain the following plot. This outlier detection is made using only the 

continuous variables. 

https://archive.ics.uci.edu/ml/datasets/Adult
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We determine that there are thirty eight outliers, located in the upper right portion of the prior 

plot. As the Mahalanobis distance should follow a Chi-Square distribution (with 5 degrees of 

freedom according to the number of continuous variables), we set as outliers the points for 

which the robust mahalanobis distance is higher than the 97.5%-quantile of this distribution. 

The red lines show this value. 

These outlier individuals have in common that they all make over 50k a year, but more 

importantly that they all answered that there “capital gains” per year was 99999 which is 

irregular for that variable.  From here on out, we will assign these individuals with a very low 

weight so that their captial gains responses don’t unduly influence the analysis. 

 

We next discretize ("fnlwgt”, "education.num”, "capital.gain”, "capital.loss” "hours.per.week”) 

into quartiles.  We also discretize the “age” variable into 5 groups (under 25, 26 to 34, 35 to 49, 

50 to 62, 63 and up).  

In the end we are left we with a dataset as follows:  
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From  our data summary, we can see the most occurring individuals are between 36 and 49, 

work for private employers, have at least a high school education, are husbands, white, work 

40 hours a week, consider the US their native country and make less than 50 thousand dollars 

a year. 

 

III- MCA 

Now all of our variables are factors, and so is the target. It is a natural idea to perform an MCA 

on this dataset. Besides, this will allow us to detect non-linear relationship between variable. 

As we have a lot of individuals and quite many modalities too, it would be a more adapted 

method than applying a PCA. 

As we only have 14 variables and we assume that they all play a role to predict the target, 

we will only set the target variable as illustrative. So we have 14 active variables. We will also 

set the weights of the MCA as 1 for all individuals except the outliers whom will be assigned a 

weight of 0.00001. 

The followings are some plots of the MCA results. 

 

The first plot represents all individuals and all variables (active and illustrative), it is very loaded 

and we cannot really extract information from it except from the global distribution and some 

outlier modalities. 
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The second plot below is easier to read.  It represents the variables according to their 

correlations (cos square) to the dimensions. We can see that the most relevant modalities are 

“education”, “education.num” and “occupation” (further from the center).  Those three 

variables are also the most correlated with the second dimension. On the other hand 

“relationship” and “marital.status” are highly correlated with the first dimension.  The “target” 

variable is also very close to the axis of the first dimension. Anyway to interpret the distribution 

of individuals, the latent concepts and the clustering, we are more interested in the 

distribution of modalities. 

 

The next plot representing all active variables is quite difficult to read. We can easily detect 

outlier modalities but the more central ones are overlapping. To have a better understanding 

we will plot only the variables that contributed most to the dimensions. 
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The following plot shows the 20 variables that contributed most to the dimensions. We can 

already notice some pattern in the distribution of modalities. Like the opposition of “female” 

and “male” or the curve described by the number of studying years.  Also the worked hours 

per week seem to follow a straight line along the first dimension. Very young people would be 

in the middle right of the plot, whereas highly educated ones will be at the top left. 

 

We can also plot the 20 variables that are most correlated to the dimensions. The two 

modalities of the target variable appear on this plot. They are distributed over the first 

dimension axis and we can see that the “left” part of the plot would be the one containing 

people earning more than 50K a year while the “right” part would be people earning less 

than 50K a year. The first dimension could also be the dimension of wealth.   

Apart from the target the other variables are approximately the same as the ones which 

contributed most to the dimensions. We can keep reading information from this plot. For 

instance, we can see that the female modality is quite high on the second dimension but in 

the right part of the plot, while the male modality is on the contrary quite low on the second 

dimension but in the left part of the plot. So comparing those positions with the 

“education.num” evolution on the plot, and the target distribution, we can conclude that 

women are globally more educated but will make less money, while men are less educated 

but will globally make more money. We can also notice that people under 25 are very 

unlikely to make more than 50K a year. 
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The last plot only shows illustrative variables (here the target). We can notice that the modality 

“<=50K” is quite central (even if a little bit on the right) so it will be a common modality. 
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To obtain a more formal description of the dimensions we use the ‘dimdesc’ function.  Here 

are the results we obtained (keeping only the p-values equal to zero).  The firsts tables show 

the ‘$quali’ result, that is the relevant variables, whereas the second ones will show the 

‘$category’ that is the most relevant modalities. We are more interested in the second one, 

although the variables can also give interesting information. 

 

The first dimension is very discriminative (even if the percentage of variation explained is only 

3.14%). First this dimension separates the target modalities. So the first dimension is the 

dimension of “wealth”. We can point out that a positive capital gain will also be negatively 

correlated with the first dimension (on the left) and that makes sense as we can assume that 

only wealthy people will make any kind of ‘capital gain’. The first dimension also separates 

the working hours modalities: on the right there will be people working less (between 1 and 40 

hours a week) certainly including people who do not have a job. On the left there will be 

people working a lot (between 45 and 99 hours a week). Furthermore we can see that 

education is also distributed on this dimension, with two lower modalities on the right and 

higher education in the left part of the plot. This kind of information is directly related to the 

professional situation and what one is earning a year. But the first dimension also bears some 

‘social’ information. First the age categories: in the right there will be younger people, while in 

the left there are middle age ones (36 to 64; so not retired people). This is coherent with the 

professional and financial discrimination (as young people often do not work, and we can 

expect that the salary of someone will reach a maximum when he is between 36 and 50). 

Finally we can notice that people who did not give their profession (occupation_level_NA) 

are in the right part of the plot too, as is the ‘female’ modality whereas high professions 

(managerial…) will be on the left part (negative correlation).  
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The second dimension is clearly the dimension of education, with highest education on top 

and lower ones at the bottom. It also differentiates women and men.  Some professions also 

appears as relevant, mostly because they are professions requiring high/low (if there is a 

positive/negative correlation) level of education. 

 

 

The third dimension will give a finer separation of age modalities. It opposes retired people 

(over 65 years old) to more middle age ones (26 to 49). It also opposes some education levels 

but in a different way as before. The ‘extremes’ level of education will be positively correlated 

while the ‘middle’ one (10 to 12 years of education) will be negatively correlated. 

 

 

 

We can make a plot to summarize these ideas and to give a ‘visual’ of latent concepts, but 

the plot is a little bit loaded… We can point out that in a society where there will be sex-

equality, the red line and the grey line would be perfectly perpendicular, (they should be 

mediatrices of each other) so the angle between them is an inequality measure (or its sine)! 

We can also point out that even if the ‘male’ modality is low on the second dimension while 
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the ‘female’ one is higher, it is not so clear that men are less educated than women because 

of the curved line of education levels. 

 

Now we want to apply clustering on our data to create groups of people. For that we need 

to decide how many dimensions we want to keep from the MCA analysis. First we can plot 

the eigenvalues according to the dimensions. It total we have 109 dimensions. There are 

several rules we could use to select the dimensions. We can keep the dimensions for which 

the eigenvalue is higher than the mean. We chose to keep the dimensions for which the 

eigenvalue is higher than one over the number of active variables (in this case 14). With this 

rule we keep 51 dimensions. 

In the following plot, the cut is indicated by the vertical gray line. 
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IV- Clustering 

 After deciding to keep the first 51 dimensions, we then re-run MCA (fixing the number of 

dimension kept to 51) and store only the significant dimensions into Psi. Because our dataset is 

relatively large, we progress with the following strategy to handle clustering:   

 

We decide to first perform two separate runs of the k-means algorithm on Psi giving each the 

same arbitrarily large number of clusters (12 in our instance) to look for. We then do a 

hierarchical clustering upon the centroids of crossing these 2 kmeans partitions using the ward 

distance criterion.  

 

Upon looking at the results, we do a barplot of the heights of the jumps between different 

clusterings, and decide that taking 5 clusters seems reasonable.  
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We then prune our results at a depth of 5, recalculate the centers of gravity given 5 clusters, 

and plot our findings which shows the clustering of individuals into 5 clusters.  

 

This plot is not very well seperated so we decided to run kmeans again (consolidation of the 

clustering) on our data this time giving it an input of 5 clusters to find beginning from the 

centroids obtained in the prior step. 
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This time the clusters are much better separated. We then run the function catdes on our 

clusters to get a description of what characterizes them (see Appendix for full listing). 

cluster 1:   White Working Class Men (25%)       

 Male , White, Married, self employed, age 36 to 50      

 Blue collar occupations:  craft-repair, transport-moving, farming-fishing, etc  

 High school, Some-college        

 Works 45 to 99 hours a week 

cluster 2:    Vocational School Tech-support (7%)   

 education = Assoc-voc, assoc-admin 

 

cluster 3:   The Haves (24.3%) 

 Occupation: Prof-speciality, Exec-managerial 

 education: Masters, Bachelors, Doctorate 

 Works 45 to 99 hours a week 

 Husbands, age 36 to 49 

 workclass: Local gov, State gov, self employed 

 capital gains and capital losses  

 

cluster 4:  The Diverse Workers ( 25% ) 

 Female, under 25, Black, Mexican,  

 High School 

 working class occupation,  

 works under 40 hours a week 

 

cluster 5:  The  Unemployed ( 17.7 %) 

 Female, occupation: NA,  workingclass: NA 

 under 25, unmarried / divorced, Some college 
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V - Prediction 
We chose to use prediction trees. Our first choice was to use C4.5 (which is a multi-way tree 

using theory of information: the splits are chosen according to entropy). Mostly because the 

dataset information included error rates obtained using standard algorithms and C4.5 had 

pretty good results.  Additionally, we studied prediction trees in class.  As a comparison of this 

model we also implemented a CART tree (Classification and Regression Tree). The two libraries 

used in R are RWeka and rpart respectively. 

The validation protocol is the following:  

First we will split our data in two parts (a training part that will contain 2/3 of the data and a 

testing part with 1/3). The training data will be used to optimize the parameters and to build 

the final model. The testing data are only used to compute the final validation error. 

Then, for each model (C4.5 and rpart) we will optimize the parameters on the training data. 

To do so, we use 10 fold cross validation. Setting a range for our parameters, we evaluate the 

10 fold CV error (the training and model are built with 9/10 of the data and the testing error is 

evaluated with 1/10) for every one of those and we will select the parameter that gives the 

lowest error.  

The train function in R helps doing this loop. 

The parameters we want to optimize are: 

- For C4.5: C the Confidence threshold for pruning the tree 

- For CART: cp the complexity parameter 

We will optimize ‘C’ from 0 to 0.5 by 0.1, and ‘cp’ from 0.001to 0.01 by 0.0005. 

The following screenshot of R results describe the model and the accuracy obtained for the 

different parameters.  In the C4.5 tree we are testing 10 parameters. 

 

 

 

This is the accuracy curve for C4.5 model, when optimizing the parameter. We can see that 

the accuracy keeps increasing. The best parameter will be C=0.5. 
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> C45Fit$bestTune 
     C 
10 0.5 

Once we have selected the best parameter, we can build the model with the whole training 

data (no more 10 fold CV), and the best parameter. 

From this model we are then able to compute the training and testing error. 

 

model.tree<-J48(target~., data=potec, subset=learn, control=Weka_control(C=0.5), 

na.action=NULL) 

Train 

> pred.learn<-predict(model.tree, data=potec[learn]) 
> tab<-table(pred.learn,potec$target[learn]) 
> (error.learn<-100*(1-sum(diag(tab))/nlearn))  
[1] 12.0422 
> tab 
           
pred.learn  <=50K  >50K 
     <=50K  15473  1659 
     >50K     955  3620 

The Training error is 12% 

 

Test 

> pred.test<-predict(model.tree, newdata=potec[-learn,])#subset=-learn 
> tab<-table(pred.test,potec$target[-learn]) 
> (error.test<-100*(1-sum(diag(tab))/ntest))   
[1] 17.03519 
> tab 
          
pred.test  <=50K  >50K 
    <=50K   7513  1070 
    >50K     779  1492 

The Test error is 17%. So there is an over-fitting of the model, the training error is a little bit 

optimistic. 
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Then we do the same process with CART tree. Here we are testing 19 parameters. 

 

As the parameters plays an opposite role (the confidence threshold as opposed to the 

complexity parameter), in this case the accuracy curve has a decreasing behavior. The best 

parameter is 0.001. 

 
> rpart.fitted$bestTune  
1 0.001 

With this parameter and the whole training set, we build the final model, and compute error rates. 

> p1 <- rpart(target ~ ., data=learndata,control=rpart.control(cp=0.001), weights=w[learn]) 
 

Train 
> pred.learn<-predict(p1, data=learndata, type="class") 
> tab<-table(pred.learn,learndata$target) 
> (error.learn<-100*(1-sum(diag(tab))/nlearn))  
[1] 14.65426 
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The training error is 14.7%, which is slightly worst than with the C4.5 model. 

Test 

> pred.test<-predict(p1, newdata=potec[-learn,], type="class")#subset=-learn 
> tab.test<-table(pred.test,potec$target[-learn]) 
> (error.test<-100*(1-sum(diag(tab.test))/ntest))  
[1] 15.93882 

The testing error is 16%. This time, this is less than the previous model. We computed the 

validation error on both model because as we are using only two models this isn’t costly. 

Nonetheless we should select our best final model according to the training error obtained. 

Therefore we would have chosen the C4.5 tree (but in this case we know that because of 

over-fitting this model is actually worst). 

Here follow a plot of the tree obtained with CART algorithm (as we had issues plotting the 

C4.5 tree from RWeka library) and a complexity parameter non-optimal (cp=0.05) because 

otherwise the tree was too loaded. This plot is just here to ease the interpretation and give a 

visual. 

One of the main advantages of prediction tree is their interpretability. Indeed here we can 

understand very quickly what is happening to make a decision. The cuts are done on 

‘relationship’, ‘occupation’, ‘age’, ‘capital.gain’ and ‘workclass’. The dark grey represents 

the modality ‘>50K’ while the light grey represents ‘<=50K’. For instance, following branches 

we can see that someone who is married and highly educated will have a high probability to 

make more than 50K a year (leave 19, bottom right). On the other hand, someone unmarried 

or not in family will be very likely to make less than 50K a year (leave 2, bottom left).  

 

Finally, we also have to mention that we had issues to modify the weights with C4.5 method, 

while it was possible with the CART algorithm. In our studies of the impact the outliers can 

have (they represent only a 0.12% of the individuals which is quite negligible); we tried to 
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apply the algorithm building the model without the outliers (just suppressing the 

corresponding rows) and to test them whether on the testing data also suppressing outliers or 

on the whole remaining data (test data and outliers). In both cases we got a slightly better 

training error (which makes sense as we get rid of difficult cases) and a slightly worst validation 

error. What was strange was that the validation error obtained with the outliers was smaller 

than the one without outliers. As the differences were quite small (less than 0.3%) and it 

impacted neither the best parameter optimization nor the comparison of the best model, we 

chose to keep our results as they were. Another solution would have been to set the 

corresponding value of ‘Gain’ (99999) to NA and to impute it using Mice method, 

transforming therefore outliers into more ‘normal’ individuals. The different results obtained are 

in the appendix. 

 

 

VI - Conclusion 
Going over all the task of this work we can say that they are complementary and necessary. 

First the pre-processing of the data gives us a first overview and understanding of the topic. 

Besides before going into further processing we need to clean the data and put it in the 

desired format. Then MCA will give us a deeper understanding of the data and most 

importantly, of how variables are related to each other, and to individuals. This step is very 

important and also very relevant to the clustering. Indeed the clustering allows us to group 

individuals but we have to link those groups to the modalities to understand who are the 

individuals in each group.  

Then the prediction is a different task, once we have understood the data, we can try to build 

a model to predict the target. Though we can see that some of the global behaviors we 

noticed observing the data (with MCA or with clustering) are retrieved in the prediction trees. 

The final predicting models are not so bad, as we have validation errors around 17% for the 

selected model (and 14% for the CART tree). If we consider that we are predicting the year 

income of individuals with only few information (14 categorical variables), we couldn’t expect 

very low errors.  Indeed, explaining income with those few variables has led us to have very 

stereotyped results. We can remark as a final conclusion that our results, on the interpretation 

point of view, have to be considered taking some step back and keeping in mind that they 

only describe tendencies. 
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VII – Appendix 
1. Catdes results 

    CatDes<-catdes(pot,num.var=15)
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2. Prediction errors with different processing of outliers 

 

 Initial results (without taking care of outliers in C4.5 and using weights in CART) 

C4.5: train:12.04%   test:17.04% 

CART: train 14.65%  Test: 15.94% 

 Results when training without the outliers 

C4.5  

Training error without outliers: 11.75% error 

Testing error without outliers: 17.35% 

Testing error with outliers: 17.05% 

CART: 

Training error without outlier: 14.92% 

Testing error without outlier: 16.22% 

Testing error with outliers: 16.20% 
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3. R code 
library(FactoMineR) 
library(cluster) 
library(class) 
library(gtools) 
library(xtable) 
 
######################################## 
#        Read the data                 # 
######################################## 
set.seed(10062014) 
potec <-  
  read.table("Adult.txt", header=FALSE, sep=",", na.strings="NA", dec=".") 
names(potec)<-
c('age','workclass','fnlwgt','education','education.num','marital.status','occupation'
,'relationship','race','sex','capital.gain','capital.loss','hours.per.week','native.co
untry','target') 
 
######################################## 
#        Pre-Processing                # 
######################################## 
############## NA Values 
#originally ' ?' is a level, so assigned to NA 
for (i in 1:15) { potec[potec[,i]==' ?',i]<-NA} 
summary(potec) 
 
##############  Outliers detection 
#this function is used to compute the initial mahalanobis distance 
computeDistances <- function(x,G,V) 
{ 
  lx <- x 
  lg <- G 
  lv <- V 
  s <- svd(lv) 
  D <- diag(1/s$d) 
  linv <- s$v %*% D %*% t(s$u) 
  distances <- seq(0,by=0, length = nrow(lx))  
  for(i in 1:nrow(lx)) 
  { 
    xi_minus_g <- as.matrix(lx[i,] - lg) 
    maha_dist <- (xi_minus_g %*% linv) %*% t(xi_minus_g) 
    distances[i] <- sqrt(maha_dist)  
  } 
  distances  
} 
 
# This function is used to compute the robust mahalanobis distance 
loop.mahalanobis <- function (Dataset) {   
  Bool <- FALSE 
  s<-svd(cov(Dataset)) 
  D<-diag(1/s$d) 
  Cov_inv <- s$v%*%D%*%t(s$u) 
  Dm <- rep(0, nrow(Dataset)) 
  means <- colMeans(Dataset) 
  
 
 
 n <- length(Dm) 
  h <- round(0.75*n) 



25 
 

  Matrix <- Dataset 
   
  while (n>2 && Bool == FALSE)  
  { 
     
    for (i in 1:n) 
    { centralised  <- as.matrix(Matrix[i,] - means) 
      mahasq <- centralised %*%  Cov_inv %*% t(centralised) 
      Dm[i] <- sqrt(abs(mahasq)) 
    } 
    Sorted_Dm <- sort.int(Dm, decreasing=TRUE,index.return=TRUE) 
    New_index <- Sorted_Dm$ix[1:h] 
    New_matrix <- Dataset[New_index,] 
     
    s <- svd(cov(New_matrix)) 
    D <- diag(1/s$d) 
    Cov_inv_new <- s$v %*% D %*% t(s$u) 
     
    means_new <- colMeans(New_matrix) 
    n <- h 
    h <- round(0.75*n)  
     
    if (Cov_inv_new == Cov_inv && means_new == means) 
    {Bool <- TRUE} 
    else { 
      Cov_inv <- Cov_inv_new 
      means <- means_new  
      Matrix <- New_matrix 
    } 
  }   
  return(Dm) 
} 
 
x <- potec[,c(1,3,5,11,12,13)]   #get only numeric columns 
G <- as.matrix(colMeans(x)) 
V <- cov(x)  
 
initial.distances <- computeDistances(x,G,V) 
DMahalanobis.robust <- loop.mahalanobis(x) 
 
#plot with outlier detection 
plot(initial.distances, DMahalanobis.robust) 
h = qchisq(.975,df=5) 
abline(h = h, lty = 2, col = "red") 
abline(v = h, lty = 2, col = "red") 
outliers <- which(DMahalanobis.robust > h) 
 
# those are the outliers 
outliers<- 
c(24511,24639,24674,24851,24984,25179,25373,25612,25634,25842,26084,26415,26443,26594,
26826,27078,27222,27359,27414,27636,27641,28055,28215,28265,28295,28319,28350,29636,29
807,30245,30497,30914,31112,31829,31973,32091,32239,32519) 
 
# the weights are changed accordingly 
w<-rep(1,dim(potec)[1]) 
w[outliers]<-0.00001 
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#Summary of outliers 
summary(potec[outliers,c(1,3,5,11,12,13)]) 
#Summary of non outliers 
summary(potec[-outliers,c(1,3,5,11,12,13)]) 
#capital gains of outliers 
median(potec[outliers,c(11)]) 
#capital gains of nonoutliers 
median(potec[-outliers,c(11)]) 
 
#######################  Factorization 
 
cont<-c(3,5,11,12,13)  #the continuous variables that will be split into quartiles 
for (i in cont){potec[,i]<-quantcut(potec[,i])}  
for(i in cont) levels(potec[,i]) <- paste(colnames(potec)[i],levels(potec[,i])) 
 
# Age variable 
potec[,1]<- cut(potec$age, breaks = c(0,25,35,49,64,90)) 
levels(potec[,1])<-c("age:25 and under", "age:26 to 35", "age:36 to 49", "age:50 to 
64", "age:65 and up") 
 
 
###################### Dealing with NA values 
naval<-c(2,7,14)  # the variables containing NA values 
 
# will set NA as a level: level_NA 
for (i in naval){  
  potec[,i]<- factor(potec[,i], levels = c("level_NA",levels(potec[,i])[-1])) 
  potec[is.na(potec[,i]),i]<-'level_NA' 
} 
summary(potec) 
 
######################################## 
#               MCA                    # 
######################################## 
 
illus=c(15) #all the variables (except the target) are active ones 
res.mca <- MCA(potec, quali.sup=illus,row.w=w)  # MCA with weights (outliers) 
 
#####################  Plots 
#plot of everything 
plot(res.mca,label=c("var","quali.sup","quanti.sup"))   # too loaded 
 
plot(res.mca,invisible=c("ind","quanti.sup","quali.sup"),autoLab="y",cex=0.7) # plot 
active variables 
plot(res.mca,invisible=c("ind"),cex=0.7, selectMod="contrib 20", unselect="grey70") # 
20 variables contributed most 
plot(res.mca,invisible=c("ind"),autoLab="y",cex=0.7,selectMod="cos2 
20",unselect="grey70") # 20 Variables most correlated 
plot(res.mca, invisible=c("ind","var")) # illustrative variable (target modalities) 
 
#plot of individuals  (not in the report) 
plot(res.mca,invisible=c("var","quali.sup"),autoLab="y",cex=0.7) # individus 
 
 
 
 
 
##################### Description of dimensions 
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dimdesc(res.mca) 
 
##################### Eigenvalues 
plot(res.mca$eig$eigenvalue, type="l") #plot of eigenvalues according to dimensioins 
abline(v = 51, lty = 2, col = "grey70") 
 
res.mca$eig[res.mca$eig[1]>1/14,,]  

#51 dimensions  ! keep eig > 1/(Number actives variables)..  # so nd=51 
 
sum(res.mca$eig[1])/109  #109 is the total should be the total number of dimensions 
res.mca$eig[res.mca$eig[1]>0.07142857,,] # also 51 dimensions with this rule  (mean) 
 
######################################## 
#           Clustering                 # 
######################################## 
res.mca2 <- MCA(potec, ncp=51, quali.sup=illus,row.w=w) # redo MCA with 51 dimensionns 
kept 
Psi<-res.mca2$ind$coord[,1:51] # Projetion of individuals on 51 kept dimensions 
 
# CLUSTERING OF LARGE DATA SETS 
#################### FIRST 2 KMEANS WITH K=12 
n1 = 12   # arbitrary: can be changed 
k1 <- kmeans(Psi,n1) 
k2 <- kmeans(Psi,n1) 
table(k2$cluster,k1$cluster) 
clas <- (k2$cluster-1)*n1+k1$cluster 
summary(clas) # 144 clusters (cross table of k1 and k2) 
freq <- table(clas) # number of elts in each cluster 
cdclas <- aggregate(as.data.frame(Psi),list(clas),mean)[,2:52] #52=nd+1, center of 
gravity of cells of the cross table 
 
##################### SECOND HIERARCHICAL CLUSTERING UPON THE CENTROIDS OF CROSSING 
THE 2 KMEANS PARTITIONS 
d2 <- dist(cdclas) 
h2 <- hclust(d2,method="ward",members=freq) # Tree with ward criteria 
plot(h2) 
barplot(h2$height[(nrow(cdclas)-50):(nrow(cdclas)-1)]) # plot of the last 50 
aggregations 
nc = 5  # cut after 4th jump, will keep 5 clusters 
c2 <- cutree(h2,5)  # cut the tree accordingly 
cdg <- aggregate((diag(freq/sum(freq)) %*% as.matrix(cdclas)),list(c2),sum)[,2:52] # 
final center of gravity of clusters 
 
##################### Plot of clustering 
plot(Psi[,1],Psi[,2],type="n",main="Clustering of individuals in 5 classes") 
text(Psi[,1],Psi[,2],col=c2,cex = 0.6) 
abline(h=0,v=0,col="gray") 
legend("topright",c("c1","c2","c3","c4","c5"),pch=20,col=c(1:5)) 
 
# to help vizualising (not in the report) plot of the individuals colored according to 
the target. 
plot(Psi[,1],Psi[,2],type="n",main="target distribution")  
text(Psi[,1],Psi[,2],col=unclass(potec[,15]),cex = 0.6) 
legend("topright",levels(pote[,15]),pch=20,col=c(1:2)); abline(h=0,v=0,col="gray") 
 
 
 
 
 



28 
 

##################### CONSOLIDATION 
k6 <- kmeans(Psi,centers=cdg)  
k6$size  #size of the clusters 8259 2449 7917 8184 5752 
 
##################### plot of the consolidatedclustering 
plot(Psi[,1],Psi[,2],type="n",main="Clustering of individuals in 5 classes") 
text(Psi[,1],Psi[,2],col=unclass(k6$cluster),cex = 0.6) 
abline(h=0,v=0,col="gray") 
legend("topright",c("c1","c2","c3","c4","c5"),pch=20,col=c(1:5)) 
 
##################### Description of clusters 
potec.comp = cbind.data.frame(potec,k6$cluster) # A dataset with the cluster 
assignment 
potec.comp[,16]<-as.factor(potec.comp[,16]) 
pot<-potec.comp[,-c(15)] # don't want to describe the target with our clustering 
(predicted variable) 
CatDes<-catdes(pot,num.var=15) 
CatDes$category 
 
######################################## 
#           Prediction                 # 
######################################## 
library(party) 
library(RWeka) 
library(partykit) 
library(caret) 
library(e1071) 
library(rpart) 
################### Split data into Training/Testing set 
N<-dim(potec)[1] 
learn<-sample(1:N,round(2*N/3)) 
nlearn<-length(learn) 
ntest<-N-nlearn 
################### Parameter optimization C4.5 
c_sample <-seq(0.05,0.50,by=0.05) 
#length(c_sample) 
 
# create fixed sampling scheme (10-folds) 
train <- createFolds(potec$target, k=10) 
 
### (Prediction Tree)  the fitting of parameters will be done on train set, using 10 
fold CV 
C45Fit <- train(potec[learn,-15], potec[learn,15], "J48", 
                tuneLength = 10,  
                tuneGrid=expand.grid(.C=c_sample), 
                trControl = trainControl( 
                  method = "cv", indexOut = train, repeats=10)) 
 
plot(C45Fit$results[,1],C45Fit$results[,2],type='l') # acuracy according to tested 
parameters 
C45Fit  # accuracy keep increasing with C, so final model kept: 0.5 
C45Fit$results   # table accuracy/parameters 
C45Fit$bestTune  # best parameter 
C45Fit$finalModel # can see whole description of tree (it is quite long) 
 
 
 
 
#################### Build the model C4.5 
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# at this point we use the best parameter (c=0.5) to make a prediction with all 
training data (no more CV) 
model.tree<-J48(target~., data=potec, subset=learn, control=Weka_control(C=0.5), 
na.action=NULL) 
 
#################### Errors C4.5 
# Training sample 
pred.learn<-predict(model.tree, data=potec[learn]) 
tab<-table(pred.learn,potec$target[learn]) # contingency matrix 
(error.learn<-100*(1-sum(diag(tab))/nlearn))  #12%  => This model is selected 
 
# Test sample 
pred.test<-predict(model.tree, newdata=potec[-learn,])#subset=-learn 
tab<-table(pred.test,potec$target[-learn]) # contingency matrix 
(error.test<-100*(1-sum(diag(tab))/ntest))  #17% 
 
####################### Parameter optimization with CART 
learndata <- potec[learn,] 
cp_sample <-seq(0.001,0.01,by=0.0005) 
#length(cp_sample) 
 
train <- createFolds(potec$target, k=10) 
rpart.fitted <- train(potec[learn,-15], potec[learn,15], "rpart", weights=w[learn], 
                      tuneLength = 19,  
                      tuneGrid=expand.grid(.cp=cp_sample), 
                      trControl = trainControl(method = "cv", indexOut = train, 
repeats=10)) 
 
rpart.fitted$results  # parameters/accuracy table 
rpart.fitted$bestTune  #best parameter cp = 0.001 
rpart.fitted$finalModel # can see whole description of tree 
 
######################## Build model CART 
p1 <- rpart(target ~ ., data=learndata,control=rpart.control(cp=0.001), 
weights=w[learn]) 
 
######################## Plot a tree CART (no same complexity parameter because the 
tree is too big) 
#p1 <- rpart(target ~ ., data=learndata,control=rpart.control(cp=0.05), 
weights=w[learn]) 
plot(rpart.fitted$results[,1],rpart.fitted$results[,2],type='l') 
plot(as.party.rpart(p1),type="extended") 
 
######################## Errors CART 
#Training sample 
pred.learn<-predict(p1, data=learndata, type="class") 
tab<-table(pred.learn,learndata$target) 
(error.learn<-100*(1-sum(diag(tab))/nlearn))  #15%  => This model isn't selected 
 
# Testing sample 
pred.test<-predict(p1, newdata=potec[-learn,], type="class") 
tab.test<-table(pred.test,potec$target[-learn]) 
(error.test<-100*(1-sum(diag(tab.test))/ntest))  #16% 


