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Explainable AI for Sequential Data
For image, text and time series data 
tasks,  deep learning neural nets have 
become the default modeling choice.
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Explainable AI for Sequential Data
For image, text and time series data 
tasks,  deep learning neural nets have 
become the default modeling choice.
 

Their ubiquity necessitates 
transparency into how such models 
arrive at the predictions they make in 
order that they be deemed 
trustworthy for use in critical 
domains.
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● Who are we explaining to:  
    End user?   Expert/Researcher?   
     Model developers?   Other Models?

Explainable AI for Sequential Data Questions



● Who are we explaining to:  
    End user?   Expert/Researcher?   
     Model developers?   Other Models?

● White Box vs Black Box:                                  
    Do we have access to the model internals?  
    The data it was trained on?  

Explainable AI for Sequential Data Questions

VS ?



● Explaining from what point in model process: 
    Pre-model,  In-Process or Post Hoc 

                                                                 Secondary g(f(x))

         data     -> 

Stop explaining black box machine learning models for high stakes decisions 
and use interpretable models instead ( Rudin, et al, 2019 Nature )

 

Explainable AI for Sequential Data Questions

https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x


● Explaining from what point in model process: 
    Pre-model,  In-Process or Post Hoc 

                                                                 Secondary g(f(x))

         data     -> 

Stop explaining black box machine learning models for high stakes decisions 
and use interpretable models instead ( Rudin, et al, 2019 Nature )

● Global model vs Individual instance based explanations 

Explainable AI for Sequential Data Questions

https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x


Post Hoc

Feature Attribution:  which features contributed most to a model’s output 
- Path Integrated Gradients ( IG )
- Shapley Additive Explanations ( SHAP )
- Interpretability with Differential Masking

Influential examples:  which training data most influenced a model’s output   
- Influence Functions
- Representer Point Selection for Explaining Deep Neural Networks 

Counterfactuals: minimal change that would have led to a different output  
 

BERT probing: assess how well a LM encodes semantic/syntatic properties of 
                             language by evaluating (“probing”) on downstream tasks 

Types of Explainable AI XAI types

https://arxiv.org/abs/1703.01365
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf


Issues with Post Hoc secondary model explainers

Feature importance/saliency methods
- Need Baselines ( Shap / IG ) 
- Are local/linear approximations of the actual model faithful explanations?
- Can we interpret Attention weights as explanations?

Influence functions:  
- Expensive to compute
- Correlation to true influence for deep architectures

Counterfactuals: 
- Semantic distance and meaning with text?

BERT probing:
- Don’t generalize past probing tasks and don’t “explain” model decisions

Post Hoc Open Issues Challenges / Motivations



In-Process 

Prototypes:  learn “prototypical” representations 
- Deep Learning for Case-Based Reasoning through Prototypes 

Deep k-NN models:  utilize layer representations as additional “clustering” features 
- Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust DL

Concept Bottlenecks:  layer specific additional task loss
- Concept bottleneck models
- On completeness-aware concept-based explanations in deep neural networks

Retrieval as Explanation: for tasks involving entity retrieval as an intermediate step
- REALM: retrieval-augmented language model pre-training
- Entities as experts: Sparse memory access with entity supervision

Feature Importance as an auxiliary loss during training:
- Incorporating Priors with Feature Attribution on Text Classification

Require access and modifications to the underlying model ….

In-Process Explainable AI Challenges / Motivations



In-Process 

Prototypes:  learn “prototypical” representations 
- Deep Learning for Case-Based Reasoning through Prototypes 

Deep k-NN models:  utilize layer representations as additional “clustering” features 
- Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust DL

Concept Bottlenecks:  layer specific additional task loss
- Concept bottleneck models
- On completeness-aware concept-based explanations in deep neural networks

Retrieval as Explanation: for tasks involving entity retrieval as an intermediate step
- REALM: retrieval-augmented language model pre-training
- Entities as experts: Sparse memory access with entity supervision

Feature Importance as an auxiliary loss during training:
- Incorporating Priors with Feature Attribution on Text Classification

Require access and modifications to the underlying model ….
     which is fine for critical applications!

In-Process Explainable AI Challenges / Motivations



In-process explainable models for Sequential Data

• are an Useful & Under-explored area for sequential data modeling

• provide Interpretable and Faithful explanations of model decisions

• allow for model “diagnosis” and intervention at inference time.
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In-process explainable models for Sequential Data

• are an Useful & Under-explored area for sequential data modeling

• provide Interpretable and Faithful explanations of model decisions

• allow for model “diagnosis” and intervention at inference time.

Entity Representation learning allows for an additional interesting
      and underexplored explainability aspect that grounds models.

Scalability is vital to the adoption of models in practice
Both play a central role in this work. 
      

Objectives Challenges / Motivations



Completed Work

● Learning Dense Representations for Entity Retrieval. (CoNLL 2019)

● Deep Classification of Time-Series Data with Learned Prototype Explanations. 
(ICML time series workshop 2019 joint work with Alan Gee) 

● Biomedical Interpretable Entity Representations. (ACL-IJCNLP 2021)

Completed work



Completed work

Learning Dense 
Representations for Entity 
Retrieval. (CoNLL 2019)

Constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval 
with an in-process, iterative hard negatives procedure 
for model learning and inference time inspection.

Deep Classification of 
Time-Series Data with 
Learned Prototype 
Explanations. (ICML 19) 

Adapted a prototypical autoencoder classifier to be 
compatible with time series data and allow for 
tunable prototype diversity leading to improved accuracy 
and global and instance level explanations.

Biomedical Interpretable 
Entity Representations. 
(ACL-IJCNLP 2021)

Learned a distantly supervised entity type system and data 
set for use in training a Biomedical Interpretable Entity 
model whose representations exist in a semantically 
meaningful vector space & whose predictions may be 
interpreted and diagnosed with an oracle method. 

Completed Work



Learning 
Dense Representations 
for Entity Retrieval

Gillick, D., Kulkarni, S., Lansing, L., Presta, A., Baldridge, J., Ie, Eugene., Garcia-Olano, D. 
“Learning Dense Representations for Entity Retrieval”. Proceedings of the 23rd Conference on 
Computational Natural Language Learning (CoNLL), Hong Kong, China, 2019.

Completed Work 1



Entity Resolution:
Predict the most probable “entity” 

in a knowledge graph ( Wikipedia ) 
that a “mention” links to
given its surrounding “context.” 

Completed Work 1Motivation



Entity Resolution:
Predict the most probable “entity” 

in a knowledge graph ( Wikipedia ) 
that a “mention” links to
given its surrounding “context.” 

Example Query:        What is George Harrison’s favorite Nintendo game? 
Mention: George Harrison
 Context: What is __ favorite Nintendo Game ?
     Entity: ????
5.7 million entities to choose from in Wikipedia (considering only english) 

   

Finding the real entity this mention resolves to
allows us to learn representations grounded in the real world.

           and to leverage structured data from the knowledge graph. 

Completed Work 1Motivation



Example Query:        What is George Harrison’s favorite Nintendo game? 

                                 George Harrison                                             George Harrison

                       

                                          Q2643                                                               Q5540278

Completed Work 1Motivation



Example Query:        What is George Harrison’s favorite Nintendo game? 

                                Beatles Guitarist                                   Former Senior VP of Marketing          

                            Highest  Popular Prior                                at Nintendo of America.

                       

                                          Q2643                                                               Q5540278

Completed Work 1Motivation



Prior State of the Art for Entity Resolution:      

● Train on ( Mention, Context, Entity ) Triples.

   2 Stages    
      (1) Retrieve Candidates    

        ● Construct a Mention to Entities Lookup  “Alias” Table.
            9.8 Million unique mention strings 
            5.7 Million unique entities 

       (2) Re-Rank them

● Limitations
1) Low Recall 
2) Context not considered.  Can’t predict unseen entities

Completed Work 1Motivation



Define a novel dual encoder architecture for 
              learning entity and mention encodings suitable for retrieval 
              

Describe a fully unsupervised, iterative hard-negative mining algorithm
              that greatly improves retrieval performance and 
              can be used to track and explain model learning.

Approximate nearest neighbor search yields quality candidate entities efficiently.

Outperform discrete retrieval baselines ( alias table, BM25 ) and  
              gives results competitive with the best reported accuracy on TACKBP-2010.

Completed Work 1Contributions



Completed Work 1Contributions



The dual encoder learns a mention encoder φ and an entity encoder ψ, 

where the score of a mention-entity pair (m, e) is:       

                                             s(m, e) = cos( φ(m),  ψ(e) ) 

Completed Work 1Training with Sampled Softmax



The dual encoder learns a mention encoder φ and an entity encoder ψ, 

where the score of a mention-entity pair (m, e) is:       

                                             s(m, e) = cos( φ(m),  ψ(e) ) 

These pairs constitute only positive examples, 
so we use in-batch random negatives (Henderson et al., 2017;): 

We build the all-pairs similarity matrix for all mentions & entities in a batch. 
& optimize a softmax loss on each row of the matrix. 

We do this sampled softmax (Jozefowicz et al, 2016) 
        in place of a full softmax 

because the normalization term 
is intractable to compute over all 5.7M entities.

Completed Work 1Training with Sampled Softmax
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For each training pair (mi, ei) in a batch of B pairs, the loss is computed as:

We track in-batch recall@1 accuracy on val set 
and stop training after the metric flattens out (about 40M steps).

Recall@1 means for each instance, 
               the models gets a score of 1 
               if the correct entity is ranked above all in-batch random negatives, 
               0 otherwise. 

Hyperparams: batch size of 100, fixed learning rate 0.01
                            SGD with Momentum of 0.9, 

Completed Work 1Training with Sampled Softmax



Random negatives are not enough to train an accurate entity resolution model 

So after learning an initial model using random negatives, 
    we identify more challenging “hard negatives” via the following:

 1. Encode all mentions and entities found in training pairs using current model.
2. For each mention, retrieve the most similar 10 entities (i.e., its nearest neighbors).
3. Select all entities ranked above the correct one as negative examples.

Completed Work 1Iterative Hard Negative Sampling



Random negatives are not enough to train an accurate entity resolution model 

So after learning an initial model using random negatives, 
    we identify more challenging “hard negatives” via the following:

 1. Encode all mentions and entities found in training pairs using current model.
2. For each mention, retrieve the most similar 10 entities (i.e., its nearest neighbors).
3. Select all entities ranked above the correct one as negative examples.

We merge these new hard negative mention/entity pairs
        with the original positive pairs to construct an additional task 
        & resume training the dual encoder using logistic loss on them. 

For a pair (m, e) with label y ∈ {0, 1}, the hard negative loss is defined as:

Completed Work 1Iterative Hard Negative Sampling



The hard negative task is mixed with the original random negatives task 
                            
                                                Lmulti = Lorig + Lhard 

Completed Work 1Multi-task loss & Task Results



The hard negative task is mixed with the original random negatives task 
                            
                                                Lmulti = Lorig + Lhard 

Completed Work 1Multi-task loss & Task Results



During each iteration of learning, 
we identify entities which our model 
assigns a higher ranking than the true entity 
associated with a given mention and context.

These hard negative triples ( m, e’, 0 ) 
 can be inspected over time during training 
or inference to assess the mention/contexts 
and entities that are added which are difficult 
for the model to learn ( esp. later iterations )

This interpretable in-process information 
about the learning process could be used to:

- improve error analysis, 
- identify cases where additional supervision could be useful 
- gauge confidence in inference time predictions

Completed Work 1Hard Negative In-Process Explanations
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At inference time,
        given a test mention/context,

1) Get K nearest mention/contexts 
from training set

2) Collectively assess how each of
them performed over iterations
( gather the hard negatives along 
  with the true entities )

3) Get top entity prediction(s) 
      for the test mention/context
        via cosine similarity

4)  Utilize 2 and 3 results to calculate
 confidence measures for 
 the final entity prediction 

Completed Work 1Hard Negative In-Process Explanations



Inspecting Entity Encodings for Semantic Meaning

Completed Work 1T-SNE visualization



Inference is done by computing cosine similarity between 
the test mention/context encoding and each of the cached entity encodings. 

Approximate Search using quantization-based approaches (Guo et al. (2016) )   
can be used to speed up retrieval greatly!

Completed Work 1Retrieval at Scale



Explaining Deep Classification 
of Time-Series Data 
with Learned Prototypes

Garcia-Olano, D.*, Gee, A.*, Ghosh, J., Paydarfar, D.  “Deep Classification of Time-Series Data with Learned 
Prototype Explanations”. International Conference on Machine Learning (ICML 2019 time series workshop)

* equal contribution

Completed Work 2
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Motivation



Completed Work 2
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Motivation



Completed Work 2

Prototype
Classifier
Network

  n data points
m prototypes 
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Completed Work 2

Predicting 
Bradycardia 
from ECG signals

Motivation



Completed Work 2

Prior work 
Latent Space Representation for Bradycardia task

Motivation



Completed Work 2Prototypes for Time Series

Prototype
Classifier
Network Updated

Prototype Diversity Loss



Completed Work 2

Prior work: 
Latent Space Representation for Bradycardia task

Prototypes for Time Series



Completed Work 2

Our work: 
Latent Space Representation for Bradycardia task

Prototypes for Time Series



Completed Work 2

Prototype neighbor         Prototype class 
diversity ΨN                             diversity ΨC      

Results and Prototype Diversity 



Completed Work 2Spoken MNIST Performance



Completed Work 2

    

Explainability via Prototypes 



Completed Work 2

Decoded Representations of Prototypes
Explainability via Prototypes 



Completed Work 2Explainability via Prototypes 

            Spoken Digit Global Explainability                             Instance Explainability



Biomedical Interpretable 
Entity Representations

Garcia-Olano, D., Onoe, Y., Baldini, I., Ghosh, J., Wallace, B., Varshey, K. “Biomedical Interpretable Entity 
Representations”.  Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021 )

Completed Work 3



Entities over text = typically embedded in dense vector spaces 
      with pre-trained language models (BERT,etc ).
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Entities over text = typically embedded in dense vector spaces 
      with pre-trained language models (BERT,etc ).

                       ← 

 
→  

                                  Not immediately interpretable.

Dense Entity      = Give good performance for entity-related tasks,
Embeddings        but using them in those tasks
                                 requires additional processing in neural models.

 

Completed Work 3Motivation



Onoe et al* learn human readable interpretable entity representations 
that achieve high performance without additional learning (“out of the box”) 
                                                        

                                      

Completed Work 3

“Interpretable Entity Representations  Through Large Scale Typing”   
Yasumasa Onoe & Greg Durrett . Findings of EMNLP 2020 

IERs



Onoe et al* learn human readable interpretable entity representations 
that achieve high performance without additional learning (“out of the box”) 
                                                        fine grained entity types

                                                     represent probability of entity have corresponding properties

experiments using Ultra Fine Entity Type system (10k) 
                                     and Wikipedia Categories Type System (60k) 

Completed Work 3IERs



Completed Work 3IERs

Problem setup: Interpretable Entity Representations  

  s =  a sequence of context words, 
 m = an entity mention span in s. 
   t ∈ [0, 1] T    binary vector of entity types over types in T  

 Goal:  Learn parameters θ of a function f  that 
            maps the mention m and its context s   
             ⇒ to a vector t  
            that captures salient features of the entity mention in its context

High dimensional Multi-label classification task over entity types



                                   

    *[ Glesatinib ]* is a dual inhibitor of c-Met and SMO 
                                      that is under phase II clinical trial for non-small cell lung cancer.

    

 

   Can we adapt IERs for the Biomedical Domain?
Completed Work 3Biomedical IERs



                                   

    *[ Glesatinib ]* is a dual inhibitor of c-Met and SMO 
                                      that is under phase II clinical trial for non-small cell lung cancer.

    

Most probable 
entity types for 
mention/context

 

   Can we adapt IERs for the Biomedical Domain?

of 60k wiki
entity types

Completed Work 3Biomedical IERs



Completed Work 3

Distant Supervision
to construct
Entity Type System
and Training Data.



Completed Work 3
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Training loss:  
     Independent sum 
     of binary cross entropy losses 
     over all all entity types T 
     over all training examples D.
    D      T 
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Training loss:  
     Independent sum 
     of binary cross entropy losses 
     over all all entity types T 
     over all training examples D.
    D      T 

 

Inference via distance metric (cosine sim, dot prod)
                    between Biomedical IERs
                    without fine-tuning
                    ( leverages quantized based
                       efficient similarity search )

Completed Work 3
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(1) Named Entity Disambiguation (NED) on Clinical Entities.

Given a entity mention, context & set of candidate entities, 
identify which of the candidates is the true one linked to the mention.
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(1) Named Entity Disambiguation (NED) on Clinical Entities.

Given a entity mention, context & set of candidate entities
identify which of the candidates is the true one linked to the mention.
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(2)    Entity label Classification for Cancer Genetics

Completed Work 3Using BIERs



(2)    Entity label Classification for Cancer Genetics

Completed Work 3Using BIERs



Allows for error analysis at the component level 
to identify areas lacking in supervision 
and/or possible changes to the type system.

Completed Work 3Debugging with BIERs



Allows for error analysis at the component level 
to identify areas lacking in supervision 
and/or possible changes to the type system.

How well the model could have done 
had it known to fallback to 
using the intermediate dense embedding
in cases where the sparse representation 
led to an incorrect prediction 

Motivation for future work 
on developing a dynamic approach 
to making predictions 
that is a function of model confidence.

Completed Work 3Debugging with BIERs



Completed Work 3Debugging with BIERs   Error analysis using BIERS



Completed work

Learning Dense 
Representations for Entity 
Retrieval. (CoNLL 2019)

Constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval 
with an in-process, iterative hard-negatives procedure 
for model learning and inference time inspection.

Deep Classification of 
Time-Series Data with 
Learned Prototype 
Explanations. (ICML 19) 

Adapted a prototypical autoencoder classifier to be 
compatible with time series data; 
allowing for tunable prototype diversity and improved 
accuracy and global and instance level explanations.

Biomedical Interpretable 
Entity Representations. 
(ACL-IJCNLP 2021)

Learned a distantly supervised entity type system and data 
set for use in training a Biomedical Interpretable Entity 
model whose representations exist in a semantically 
meaningful vector space & whose predictions may be 
diagnosed with an oracle method. 

Completed Work



Summary 
This proposal shows in-process diagnostic techniques 
are useful for sequential data tasks both in accuracy & interpretability.

1.  We constructed a dual mention-entity encoder that learns
     dense representations for efficient neural Entity Retrieval with an 
     in-process, iterative hard-negatives procedure that can be inspected.



Summary 
This proposal shows in-process diagnostic techniques 
are useful for sequential data tasks both in accuracy & interpretability.

1.  We constructed a dual mention-entity encoder that learns
     dense representations for efficient neural Entity Retrieval with an 
     in-process, iterative hard-negatives procedure that can be inspected.

2. We adapted a prototypical autoencoder classifier to be compatible 
    with time series data; allowing for tunable prototype diversity 
    for improved global and instance level explanations.



Summary 
This proposal shows in-process diagnostic techniques 
are useful for sequential data tasks both in accuracy & interpretability.

1.  We constructed a dual mention-entity encoder that learns
     dense representations for efficient neural Entity Retrieval with an 
     in-process, iterative hard-negatives procedure that can be inspected.

2. We adapted a prototypical autoencoder classifier to be compatible 
    with time series data; allowing for tunable prototype diversity 
    and improved global and instance level explanations.

3. We learned a distantly supervised entity type system and data set for 
    use in training a Biomedical Interpretable Entity model whose 
    representations exist in a semantically meaningful vector space    
    & whose predictions may be diagnosed with an  oracle method. 
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Thank you!


