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‘The University of Texas at Austin

e Who are we explaining to:

End user? Expert/Researcher?
Model developers? Other Models?

e White Box vs Black Box:

Do we have access to the model internals?
The data it was trained on?
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e Explaining from what point in model process:
Pre-model, In-Process or Post Hoc
Secondary g(f(x))

f(z)

data ->

Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead ( Rudin, et al, 2019 Nature )


https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x

@TEXAS Explainable Al for Sequential Data Questions

The University of Texas at

e Explaining from what point in model process:
Pre-model, In-Process or Post Hoc
Secondary g(f(x))

f(z)

data ->

Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead ( Rudin, et al, 2019 Nature )

e Global model vs Individual instance based explanations


https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x
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The University of Texas

Post Hoc

Feature Attribution: which features contributed most to a model's output
- Path Integrated Gradients ( IG)
- Shapley Additive Explanations ( SHAP )
- Interpretability with Differential Masking

Influential examples: which training data most influenced a model’'s output
- Influence Functions
- Representer Point Selection for Explaining Deep Neural Networks

Counterfactuals: minimal change that would have led to a different output

BERT probing: assess how well a LM encodes semantic/syntatic properties of
language by evaluating (“probing”) on downstream tasks


https://arxiv.org/abs/1703.01365
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
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Issues with Post Hoc secondary model explainers

Feature importance/saliency methods
- Need Baselines (Shap/1G)
- Are local/linear approximations of the actual model faithful explanations?
- Can we interpret Attention weights as explanations?

Influence functions:
-  Expensive to compute
- Correlation to true influence for deep architectures

Counterfactuals:
- Semantic distance and meaning with text?

BERT probing:
- Don't generalize past probing tasks and don't “explain” model decisions
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In-Process

Prototypes: learn “prototypical’ representations
-  Deep Learning for Case-Based Reasoning through Prototypes

Deep k-NN models: utilize layer representations as additional “clustering” features
- Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust DL

Concept Bottlenecks: |layer specific additional task loss
- Concept bottleneck models
- On completeness-aware concept-based explanations in deep neural networks

Retrieval as Explanation: for tasks involving entity retrieval as an intermediate step
- REALM: retrieval-augmented language model pre-training
- Entities as experts: Sparse memory access with entity supervision

Feature Importance as an auxiliary loss during training:
- Incorporating Priors with Feature Attribution on Text Classification

Require access and modifications to the underlying model ....
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In-Process

Prototypes: learn “prototypical’ representations
-  Deep Learning for Case-Based Reasoning through Prototypes

Deep k-NN models: utilize layer representations as additional “clustering” features
- Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust DL

Concept Bottlenecks: |layer specific additional task loss
- Concept bottleneck models
- On completeness-aware concept-based explanations in deep neural networks

Retrieval as Explanation: for tasks involving entity retrieval as an intermediate step
- REALM: retrieval-augmented language model pre-training
- Entities as experts: Sparse memory access with entity supervision

Feature Importance as an auxiliary loss during training:
- Incorporating Priors with Feature Attribution on Text Classification

Require access and modifications to the underlying model ....
which is fine for critical applications!
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- allow for model “diagnosis” and intervention at inference time.



;[‘EXAS O b_] ectives Challenges / Motivations

In-process explainable models for Sequential Data
- are an Useful & Under-explored area for sequential data modeling
« provide Interpretable and Faithful explanations of model decisions
- allow for model “diagnosis” and intervention at inference time.
Entity Representation learning allows for an additional interesting
and underexplored explainability aspect that grounds models.

Scalability is vital to the adoption of models in practice
Both play a central role in this work.
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Completed Work

e |earning Dense Representations for Entity Retrieval. (CoNLL 2019)

e Deep Classification of Time-Series Data with Learned Prototype Explanations.
(ICML time series workshop 2019 joint work with Alan Gee)

e Biomedical Interpretable Entity Representations. (ACL-IJCNLP 2021)
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Completed work

Completed Work

Learning Dense
Representations for Entity
Retrieval. (CoNLL 2019)

Constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval
with an in-process, iterative hard negatives procedure

for model learning and inference time inspection.

Deep Classification of
Time-Series Data with
Learned Prototype

Explanations. (ICML 19)

Adapted a prototypical autoencoder classifier to be
compatible with time series data and allow for

tunable prototype diversity leading to improved accuracy
and global and instance level explanations.

Biomedical Interpretable
Entity Representations.
(ACL-1JCNLP 2021)

Learned a distantly supervised entity type system and data
set for use in training a Biomedical Interpretable Entity
model whose representations exist in a semantically
meaningful vector space & whose predictions may be

interpreted and diagnosed with an oracle method.
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The University of Texas at Au:

Learning
Dense Representations
for Entity Retrieval

Gillick, D., Kulkarni, S., Lansing, L., Presta, A., Baldridge, J., le, Eugene., Garcia-Olano, D.
“Learning Dense Representations for Entity Retrieval”. Proceedings of the 23rd Conference on
Computational Natural Language Learning (CoNLL), Hong Kong, China, 2019.
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that a “mention” links to

given its surrounding “context.”

Completed Work 1
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Entity Resolution:
Predict the most probable “entity”
in a knowledge graph ( Wikipedia )
that a “mention” links to
given its surrounding

"

Example Query: George Harrison’s

Mention: George Harrison
: What is __ favorite Nintendo Game ?
Entity: 7777
5.7 million entities to choose from in Wikipedia (considering only english)

Finding the real entity this mention resolves to
allows us to learn representations grounded in the real world.

and to leverage structured data from the knowledge graph.
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‘The University of Texas at Austin

Example Query: George Harrison's

George Harrison George Harrison

gettyimages
Paui Mounce - Carbis

Q2643 Q5540278
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‘The University of Texas at Austin

Example Query: George Harrison's
Beatles Guitarist Former Senior VP of Marketing
Highest Popular Prior at Nintendo of America.

Q2643 Q5540278
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Prior State of the Art for Entity Resolution:
e Train on ( Mention, , Entity ) Triples.

2 Stages
(1) Retrieve Candidates

e Construct a Mention to Entities Lookup “Alias” Table.
9.8 Million unique mention strings
5.7 Million unique entities

(2) Re-Rank them

e Limitations
1) Low Recall
2) Context not considered. Can't predict unseen entities
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The University of Texas

Define a novel dual encoder architecture for
learning entity and mention encodings suitable for retrieval

Describe a fully unsupervised, iterative hard-negative mining algorithm
that greatly improves retrieval performance and
can be used to track and explain model learning.

Approximate nearest neighbor search yields quality candidate entities efficiently.

Outperform discrete retrieval baselines ( alias table, BM25) and
gives results competitive with the best reported accuracy on TACKBP-2010.
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for (b) text input, (¢) sparse ID input, and (d) compound input joining multiple encoder outputs. Note that all text

encoders share a common set of embeddings.
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The dual encoder learns a mention encoder @ and an entity encoder ,

where the score of a mention-entity pair (m, e) is:

s(m, e) = cos(@(m), Yle))



@ TEXAS Training with Sampled Softmax Completed Work 1

The University of Texas at Au:

The dual encoder learns a mention encoder @ and an entity encoder ,

where the score of a mention-entity pair (m, €) is:

s(m, e) = cos( @(m), W(e)) el e2 e3 ed e5
m1
m2
m3
These pairs constitute only positive examples, ma
so we use in-batch random negatives (Henderson et al, 2017):  m5

We build the all-pairs similarity matrix for all mentions & entities in a batch.
& optimize a softmax loss on each row of the matrix.

We do this sampled softmax (Jozefowicz et al, 2016)
in place of a full softmax e e
e o2 )=
because the normalization term i ZK &%
Is intractable to compute over all 5.7M entities. =1

Zi
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For each training pair (M, €i) in a batch of B pairs, the loss is computed as:

B
L(m;,e;) = —f(m;, e;) + 1ngexp(f(mia e;j))

=1
where f(mz, ej) =a- S(mi7 Gj)

We track in-batch recall@1 accuracy on val set
and stop training after the metric flattens out (about 40M steps).

Recall@1 means for each instance,
the models gets a score of 1

if the correct entity is ranked above all in-batch random negatives,
O otherwise.

Hyvperparams: batch size of 100, fixed learning rate 0.01
SGD with Momentum of 0.9,
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The University of Texas

Random negatives are not enough to train an accurate entity resolution model

So after learning an initial model using random negatives,
we identify more challenging “hard negatives” via the following:

1. Encode all mentions and entities found in training pairs using current model.
2. For each mention, retrieve the most similar 10 entities (i.e., its nearest neighbors).
3. Select all entities ranked above the correct one as negative examples.
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The University of Texas at Au:

Random negatives are not enough to train an accurate entity resolution model

So after learning an initial model using random negatives,
we identify more challenging “hard negatives” via the following:

1. Encode all mentions and entities found in training pairs using current model.
2. For each mention, retrieve the most similar 10 entities (i.e., its nearest neighbors).
3. Select all entities ranked above the correct one as negative examples.

We merge these new hard negative mention/entity pairs
with the original positive pairs to construct an additional task
& resume training the dual encoder using logistic loss on them.
For a pair (m, e) with labely € {0, 1}, the hard negative loss is defined as:

Lp(m,e;y) = —y-log f(m,e) — (1 —y)-log(l — f(m,e))
where f(m,e) = g(ay - s(m,e) + by)
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The University of Texas at Austin

The hard negative task is mixed with the original random negatives task

Lmulti = Lorig + Lhard

System R@1 | Entities
AT-Prior 71.9 5.7M
AT-Ext 13.3 5.7M
Chisholm and Hachey (2015) | 80.7 800K
He etal. (2013) 81.0 1.5M
Sun et al. (2015) 83.9 818K
Yamada et al. (2016) 85.2 5.0M
Nie et al. (2018) 86.4 5.0M
Barrena et al. (2018) 87.3 523K
DEER (this work) 87.0 5. 7M

Table 1: Comparison of relevant TACKBP-2010 results
using Recall@ | (accuracy). While we cannot control
the candidate entity set sizes, we attempt to approximate
them here.
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The University of Texas at Austin

The hard negative task is mixed with the original random negatives task

Lmulti = Lorig + Lhard

100%

System R@1 | Entities
AT-Prior 71.9 5.7M —
AT-Ext 13.3 5.7M
Chisholm and Hachey (2015) | 80.7 800K
He etal. (2013) 81.0 1.5M
Sun et al. (2015) 83.9 818K 60%
Yamada et al. (2016) 85.2 5.0M
Nie et al. (2018) 86.4 5.0M
Barrena et al. (2018) 87.3 523K 40%
DEER (this work) 87.0 | 5.7M g 1 2 : 4 :
Table 1: Comparison of relevant TACKBP-2010 results Figure 2: Recall@1 improvement for successive itera-
using Recall@ | (accuracy). While we cannot control tions of hard negative mining for Wikinews (solid) and
the candidate entity set sizes, we attempt to approximate TACKBP-2010 (dashed).

them here.
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‘The University of Texas at A

During each iteration of learning,

we identify entities which our model

assigns a higher ranking than the true entity
associated with a given mention and context.

These hard negative triples (m, e’,0)

can be inspected over time during training
or inference to assess the mention/contexts
and entities that are added which are difficult
for the model to learn ( esp. later iterations)

This interpretable in-process information
about the learning process could be used to:

- improve error analysis,

100%

Recall@]

60%

40%

0 1 2 3 4 5

iteration

- identify cases where additional supervision could be useful
- gauge confidence in inference time predictions
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At inference time, %
given a test mention/context, . T ™ e
] = ] 2 .{
1) Get K nearest mention/contexts L me - , &
from training set af, o & %, - .
n - . E b
2) Collectively assess how each of :'n s ,'f . -
them performed over iterations E -
( gather the hard negatives along "y " w _:
with the true entities)) T - _ .
- ll. .‘
3) Get top entity prediction(s) e L TR
for the test mention/context e e n - 2
via cosine similarity ¥ e . ==
= "a
. "a . . " ges
4) Utilize 2 and 3 results to calculate iy e 2 ,
confidence measures for P - .
the final entity prediction S o Sk M
mE = -
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Inspecting Entity Encodings for Semantic Meaning
Finland vy
TUfkey ”Ekfalm My ASIA
EUROPE
India™ Japan Gem\any N AMERICA
Pakistan China Canada OCEANIA
Spaln S AMERICA
- Mexico United Kingdom
lrati Brazil United States
Israe
Egypt North Korea
Saudi Arabia New Zealand
Kuwait United Arab Emirates
Algeria Holland
Cape Verde
Sudan Cuéggu s El Salvador
Rwandamgeda Ecua%’or _
ANUOUA Figure 3.5: t-SNE visualization of our learned em-
Nicar beddings for select country Wikipedia page entities.
Liberia \?gnezuela More at diegoolano.com/deer/
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The University of Texas

Inference is done by computing cosine similarity between
the test mention/context encoding and each of the cached entity encodings.

Approximate Search using quantization-based approaches (Guo et al. (2016) )
can be used to speed up retrieval greatly!

Mean Wikinews
Method search time (ms) R@100
Brute force 291.9 97.88
AH 22.6 97.22
AH+Tree 33 94.73

Table 3: Comparison of nearest-neighbor search meth-
ods using the DEER model. The benchmark was con-
ducted on a single machine. AH indicates quantization-
based asymmetric hashing; AH+Tree adds an initial tree
search to further reduce the search space.




Completed Work 2

Explaining Deep Classification
of Time-Series Data
with Learned Prototypes

Garcia-Olano, D.*, Gee, A* Ghosh, J., Paydarfar, D. “Deep Classification of Time-Series Data with Learned
Prototype Explanations”. International Conference on Machine Learning (ICML 2019 time series workshop)

*equal contribution
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Prototypes 5 vad B TR e
. A (‘q.; r"", .." 20 -
' - ...-{_ '; :P7 <
I S % ey
s o : -

.Ep10: P8 MNIST

*Li et al. Deep learning for case-based reasoning through prototypes. (2017)
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Prototypes

" ﬁ 5 P13 SRR Y
P$., ..;:."" es s ’: ’: * e
. &;_

Py
A LR L
ﬂm MNIST
| totypes. (2017)



@ TEXAS Motivation Completed Work 2

prototype classliﬁer network h

prototype fully-connected  softmax
layer p layer w layer s

transformed

Prototype npu e i

Classifier f
Network sl
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prototype classliﬁer network h
1 prototype fully-connected  softmax

layer p layer w layer s
Prototype encoder 7L
Classifier fo
output of
Network ,,;Ji’o_t;pe
network
recopstructed S odis (h ‘:f )(x)
n data points e DS “e“;’“k
m prototypes
Feauro Vector - Prootypes  L((f,9,h), X) =E(h £, X) + A R(g© £, X)
b : it +/\1 Rl(pl,...,pm,X)

"f(x)_pi”% = Pi +A2 R2(p1a'"’pmaX)
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=N

Patient Predictive
Monitoring NICU Algorithms

Predicting
Bradycardia
from ECG signals

-

yo Y

Therapeutic

Normal ECG Moderate/Severe Intervention

134 bpm 86 bpm 55 bpm
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Prior work
Latent Space Representation for Bradycardia task

Vpos, o 0% 2y e
%" ool e .t
» ?.'.. e .'. . ° 9 -.-
2 -... i . ) )
L - -
.:. ol 05 = .'.. st - -
- -'.." . ® .
v - I, ™ - 'Q - > .
P e B | L B - > .
-~ K g+ 32 N :
o .} s, '/- o a®
PRt W e o . wi. 3 -
'] - . 2 ® . ..'. Y ..\ . ... - | ~
- ..- .. .:' .os o S .0 y 7 w '!.
. . ol W F | 07,0 mots s ] ..
- . . pN -y, . R .
s v ) S ves ‘- . o @ -
s Y % g .‘_'.' ...:l"\'.' - :' F
' o = ov . sy s
. 4 '.-. 2 ’-.. ..: &5 -vé " >»
b - - s
P 3 l. o al
. '
-

Loss from -:.'6-'9.. £ o
Lietal 2017 ‘siot: Y o



© TEXAS Prototypes for Time Series Completed Work 2

Prototype L((f,9,h), X) =E(ho f,X) + Ar R(go f, X)
Classifier + A Ri(P1y ey Prms X) 5
Network Updated + Ao Ra(P1, ooy Prmy X) (2)
+ Apg PDL(p4, ...,
Prototype Diversity Loss 4 (pl pm)
1
Mpia PDL(p1,...,Pm) = T
pd (p1 Pm) log(% ijl Min;s je(1,m] ||Pi — pjllg) +€

(D

1 ~— .
Ri(p1y ey Pmy X) =Ez'mzni€[l,n] ||Pj - f(ﬂ?i)”;, (3)
j=1

1l — .
R2(p1’ ""pmnX) =; Zmznjé[l,m] ”f(wl) —pjllg (4)
=1
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Prior work:
Latent Space Representation for Bradycardia task
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@ TEXAS Prototypes for Time Series

Our work:
Latent Space Representation for Bradycardia task
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ECG: Bradycardia
Apd Accu. 5N, Ve

0 921+0.1% 083+004 0.78+0.19
000 927+10% 0.86+0.07 0.839+0.19

le3 924+13% 087=+0.11 0.89+0.19
2¢3 93.1+04% 090 +0.04 1.00£0.00
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Maturation of Learned Prototypes Nearest Neighbor
RN L o | D o
B e

A R R |
o i e 0 i ?.'?'l"% ,
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s B —— B — MMM N
Epoch: 100 300 500 500
Acc.: 90.5% 91.5% 92.0%
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Decoded Representations of Prototypes
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‘The University of Texas at Austin

Spoken Digit Global Explainability Instance Explainability

Learned Prototypes Nearest Neighbor

“Two” 098 147 070 1.55
)

029 169 102 041

. GEBD

088 140 145 128 1.28

Mm-- ..\Y'F"‘“

Figure 8: Learned prototypes from audio waveforms of spoken dig-
its by Nicolas from the FSDD (A, ; = 500).
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The University of Texas at Au:

Biomedical Interpretable
Entity Representations

Garcia-Olano, D, Onoe, VY., Baldini, |., Ghosh, J., Wallace, B., Varshey, K. “Biomedical Interpretable Entity
Representations”. Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021)
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‘The University of Texas at Austin

Entities over text = typically embedded in dense vector spaces
with pre-trained language models (BERT,etc ).
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88, 0.44, -0.835, -0.032, -0.935, 0.318, 0.72, -0.23, -0.903, 0.912, -0.8
0.981, -0.23, 0.797, -0.785, -0.583, 0.055, -0.511, 0.413, -0.757, 0.914,
943, 0.62, -0.78, 0.888, 0.288, 0.807, -0.207, -0.284]
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Entities over text = typically embedded in dense vector spaces
with pre-trained language models (BERT,etc ).

[>>> word_embedding_for_happy

[0.519, 0.917, -0.935, 0.891, 0.396, 0.711, 0.479, 0.417, 0.744, -0.254,
-0.174, ©.233, -0.315, 0.497, -0.516, 0.22, -0.679, 0.389, -0.683, 0.909,
23, 0.528, 0.116, 0.334, 0.717, 0.857, -0.262, 0.624, -0.178, -0.045, -0.
-0.952, 0.4, 0.356, 0.091, 0.976, -0.337, -0.002, 0.054, ©0.512, -0.312,
.278, —-0.409, -0.655, -0.294, -0.453, 0.735, 0.461, 0.282, -0.43, -0.838,

3, -0.736, -0.001, 0.889, -0.228, 0.645, 0.883, 0.805]

[>>> word_embedding_for_sad ‘
[0.656, 0.407, 0.568, -0.035, -0.842, -0.257, 0.202, -0.31, 0.886, 0.386,
N 34, -0.823, -0.929, -0.068, -0.238, 0.236, -0.463, 0.56, -0.687, -0.521,
88, 0.54, 0.047, -0.434, -0.009, 0.59, 0.971, 0.798, 0.202, 0.225, 0.131,
88, 0.44, -0.835, -0.032, -0.935, 0.318, 0.72, -0.23, -0.903, 0.912, -0.8
0.981, -0.23, 0.797, -0.785, -0.583, 0.055, -0.511, 0.413, -0.757, 0.914,
943, 0.62, -0.78, 0.888, 0.288, 0.807, -0.207, -0.284]

Not immediately interpretable.

Dense Entity = Give good performance for entity-related tasks,
Embeddings but using them in those tasks

requires additional processing in neural models.
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Onoe et al* learn human readable interpretable entity representations
that achieve high performance without additional learning (“out of the box”)

e —m living people

Entity
Embedding m sportspeople

tennis
E ‘t m american
american male

tennis players

Embedding Model
(Section 3)

»

o e )
Larry Fine O'Brien served for the m G
match in the third set before Context m place
Washington came charging back. (B cities
Mention 0 .

“Interpretable Entity Representations Through Large Scale Typing”
Yasumasa Onoe & Greg Durrett . Findings of EMNLP 2020
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Onoe et al* learn human readable interpretable entity representations
that achieve high performance without additional learning (“out of the box”)
fine grained entity types

}
. living people
Embedding Model Entity © @
(Section 3) Embedding m sportspeople
tennis
e ' m american
:mer_ica{l male
Larry Fine O'Brien served for the o b
m people
match in the third set before Context m place
Washington came charging back. [ cities
Mention o

represent probability of entity have corresponding properties

experiments using Ultra Fine Entity Type system (10k)
and Wikipedia Categories Type System (60k)
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Problem setup: Interpretable Entity Representations

s = a sequence of context words,
m = an entity mention spanins.

t € [0, 1] " pina ry vector of entity types over typesin T

Goal: Learn parameters 0 of a function f that
maps the mention m and its context s
= to a vector t
that captures salient features of the entity mention in its context

High dimensional Multi-label classification task over entity types
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Can we adapt |IERs for the Biomedical Domain?

*[ Glesatinib |* is a dual inhibitor of c-Met and SMO
that is under phase Il clinical trial for non-small cell lung cancer.
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Can we adapt |IERs for the Biomedical Domain?

*[ Glesatinib [* is a dual inhibitor of c-Met and SMO
that is under phase Il clinical trial for non-small cell lung cancer.

world health organization essential medicines : 0.4941
pyridines : 0.4073
diols : 0.3539
cancer treatments : 0.3260
carboxylate esters : 0.2376
chloroarenes : 0.1984
rtt : 0.1879 \
hormonal antineoplastic drugs : 0.1768 .
MOSt probable antineoplastic drugs : 0.1037 Of 60k Wlkl
. alcohols : 0.0771 .
entrty types for prodrugs : 0.0315 eﬂtlty typeS
. _> peptides : 0.0300
menUon/Context methyl esters : 0.0223
merck : 0.0191

.0135
.0130
.0124
.0103
.0099
.0090
.0089
.0073
.0066
.0066
.0058
.0057

transgender and medicine :
teratogens :

world anti-doping agency prohibited substances :
peripherally selective drugs :
human proteins :

ureas :

withdrawn drugs :

iarc group 2a carcinogens :
prostate cancer :

mechanisms :

chemotherapy :

aromatase inhibitors :

O 0O 0O 0000000000000 O0OO0ODO0ODO0OO0OO0OOOO



PubMed
Abstracts

( 460K ) TAGCER & TRAINING DATA
CONSTRUCTION
Glesatinib ,ac-MET/SMO | Dual
Ca33004a Ci1654184
CHEMICALS & DRUGS,PHARMACOLOGIC SUBSTANCE CHEMICALS & DRUGS
Inhibitor Antagonizes P- | glycoprotein
Cl448104 co591232 co072622
CHEMICALS & DRUC S CHEMICALS & DRUGS CHEMICALS & DRUGS
Mediated Multidrug | Resistance| in | Cancer Cells
co127a07 c0237834 C1306459 coo07584
FUNCTIONAL CINCEPT NEOPLASTIC PROCESS NEOPLASTIC PROCESS

CUID to Glesatinib

DBPedia
UMLS —E From Wikipedia, the free encyclopedia
CUIDs /' mapper '
( Concept Unique Glesatinib (MGCD265) is an

\dentifiers ~a SLING / experimental anti-cancer drug.!"’
Categories: Drugs not assigned an ATC code

| Tyrosine kinase inhibitors | Acetamides = Thiourea
| Fluoroarenes | Experimental cancer drugs

37 million triples of the form | Antineopiastic and immunomodulating drug shubs
( mention, context, [types] ) 68K unique entity types total

BIOMEDICAL
Completed Work 3
woze | enmiry Tvoe Svaren MR

Distant Supervision
to construct

Entity Type System
and Training Data.
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Interpretable
Sparse Entity INEENEEEEEEENE

Representation T

Embedding I element wise
MOdeI ? sigmoid

A A A AAAAAAAAAAD

[ J
dense i _@ >ll 68k Type
Embeddmgs
IIIIIIIIIIII

...... 68,304

Mention and Context
Encoder (PubMedBERT)

[CLS] mention [SEP] context [SEP]
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Training Biomedical IERs

Interpretable
Sparse Entity INEENEEEEEEENE

Representation T
Embedding é element wise
MOdeI I sigmoid

ENEEEEEEEEEEER
A A A A AAAAAAAAAADN
| EEEEEEEEEEER
| [ ] |
dense i _@ >. | 68k Type
rec M Embeddmgs
IIIIIIIIIIII

...... 68,304

Mention and Context
Encoder (PubMedBERT)

D T
—> )ty -log(ti;) +
i

[CLS] mention [SEP] context [SEP]

Training loss:

Independent sum

of binary cross entropy losses
over all all entity types T

over all training examples D.

(1 —ti;) - log(1 — ti5),
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Interpretable
Sparse Entity INEENEEEEEEENE

Representation T
Embedding é element wise
MOdeI I sigmoid

ENEEEEEEEEEEER
A A A A AAAAAAAAAADN
EEEEEEEEEEER

| [ ] |

dense i _@ . . 68k Type
rep = Embeddmgs
[ IIIIIIIIIIII
T ...... 68,304

Mention and Context
Encoder (PubMedBERT)

[CLS] mention [SEP] context [SEP]

Training loss:
Independent sum
of binary cross entropy losses
over all all entity types T
over all training examples D.

D T
= DDt log(ty) + (L - t) - log(1 — tig),
i J

Inference via distance metric (cosine sim, dot prod)
between Biomedical IERs
without fine-tuning
(leverages quantized based
efficient similarity search )
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(1) Named Entity Disambiguation (NED) on Clinical Entities.

Given a entity mention, context & set of candidate entities,
identify which of the candidates is the true one linked to the mention.
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(1) Named Entity Disambiguation (NED) on Clinical Entities.

Given a entity mention, context & set of candidate entities
identify which of the candidates is the true one linked to the mention.

Test Acc.

Model Dot Prod Cosine Sim
BIER-PubMedBERT (ours) 80.1 84.0
BIER-SciBERT (ours) 76.4 77.3
BIER-BioBERT (ours) 71.9 75.9
Onoe and Durrett (2020) 63.6 69.8 «——
Popular Prior 73.9 -

PubMedBERT (Gu et al., 2020) 77.6 -
SciBERT (Beltagy et al., 2019) 77.4 -
BioBERT (Lee et al., 2019) 77.9 -

Table 2: BIER zero shot test results vs Logistic Regres-
sion Baselines trained on task data for NED task
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Entity label Classification for Cancer Genetics

Test Acc.
L2 Dist Dot Prod
Model Dense Sparse Dense Sparse

BIER-PubMedBERT 855 868 882 875
BIER-SciBERT 708 770 728 768
BIER-BioBERT 834 859 856 868
Onoe and Durrett (2020) 63.9 55.1 60.0 599
PubMedBERT 77.3 - 69.3 -
SciBERT 74.4 - 75.2 -
BioBERT 67.6 - 59.6 -

Table 3: Test accuracy on Cancer Genetics data using
a nearest neighbor classifier (k=1) without fine-tuning
based on sparse output or intermediate dense embed-
dings using L2 or Dot Product distance metrics.

Completed Work 3
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Entity label Classification for Cancer Genetics

Accuracy as a function of training data samples per class used
1.0

o
)

accuracy
o
(=]

@~ BIER-PMB dense NN

X
\

=y ' o ~t= BIER-PMB sparse NN
e . iy «s . PubMedBERT NN
0.2 -4 PubMedBERT finetune
5 10 25 50 75 100 200

samples per class

Figure 3: Results for the entity label classification task
under varying amounts of supervision.

Completed Work 3
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Allows for error analysis at the component level
to identify areas lacking in supervision
and/or possible changes to the type system.
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Embedding l element wise
Model sigmoid

Allows for error analysis at the component level assmsnsunanans
to identify areas lacking in supervision - EH cokmvee FH

—o—f
-

© a
8
— EEEEEN

B
|
2

1

and/or possible changes to the type system.

Mention and Context
Encoder (PubMedBERT)

(O _ ([ _[
x A A SR - |

How well the model could have done 0 S O
had it known to fallback to

using the intermediate dense embedding
in cases where the sparse representation Test Acc.

led to an incorrect prediction Task Dense Sparse Combined A

NED 84.0 81.0 91.7 +7.1
ELC 875 882 91.9 +3.7

Motivation for future work .

. . Table 5: Results for both tasks showing improvements
ond evg lo PINg a dy namic approac h that could have been achieved by combining intermedi-
to maki Nng pred Ictions ate dense and interpretable sparse output embeddings
that is a function of model confidence. generated by the same BIER-PubMedBERT model.



context: The presence of activating TSH-R mutations has also been N .
demonstrated in differentiated thyroid carcinomas. Error anaIySIS using BIERS
At present, the percentage of such a modification is low,
unless referred to selected series of tumors.

mention: thyroid carcinomas

label: Cancer
Sparse NN model pred Dense NN model pred
thyroid esophageal carcinomas
(label: Organ) (label: Cancer)
Types Types
(‘'gland', 0.99965), (‘thyroid cancer', 0.99994),
('thyroid', 0.99932), ('squamous-cell_carcinoma’, 0.9998),
('rtt', 0.999), ('thyroid', 0.99925),
(‘head_and_neck_cancer', 0.99093), (‘cancer’, 0.99133),
('neck’, 0.97243), (‘gland', 0.99039),
('head_and_neck_anatomy', 0.93763), |('nitrous_oxide', 0.01965),
(‘head', 0.86131), (‘pancreatic_cancer', 0.00152),
('squamous-cell_carcinoma', 0.0024), |('neck’, 0.00023),
('ingredient’, 0.00078), (‘thyroid_neoplasm’, 0.00019),
('thyroid disease', 0.00047), ('rtt', 0.00014),
('nitrous_oxide', 0.00034), (‘endocrine diseases', 2e-05),
(‘thyroid cancer', 0.0003), ('head', 1e-05),
(‘endocrine diseases', 0.00019), ('malignancy’, 1e-05),




TEXAS Completed work

‘The University of Texas at Au:

Completed Work

Iliearning ??:nse for Entit Constructed a dual mention-entity encoder that learns
Rg%g\slgp (aCc'),CiRSL S(r)]gr)\ 'Y | dense representations for efficient neural Entity Retrieval
' with an in-process, iterative hard-negatives procedure

for model learning and inference time inspection.

Deep Classification of Adapted a prototypical autoencoder classifier to be
Time-Series Data with compatible with time series data;

Learned Prototype : . . :
Explanations. (ICML 19) allowing for tunable prototype diversity and improved

accuracy and global and instance level explanations.

Biomedical Interpretable | | earned a distantly supervised entity type system and data
Entity Representations. set for use in training a Biomedical Interpretable Entity
(ACL-1JCNLP 2021) : L .

model whose representations exist in a semantically
meaningful vector space & whose predictions may be

diagnosed with an oracle method.
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This proposal shows in-process diagnhostic techniques
are useful for sequential data tasks both in accuracy & interpretability.

1. We constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval with an

in-process, iterative hard-negatives procedure that can be inspected.
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This proposal shows in-process diagnhostic techniques
are useful for sequential data tasks both in accuracy & interpretability.

1. We constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval with an

in-process, iterative hard-negatives procedure that can be inspected.

2. We adapted a prototypical autoencoder classifier to be compatible
with time series data; allowing for tunable prototype diversity
for improved global and instance level explanations.
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This proposal shows in-process diagnhostic techniques
are useful for sequential data tasks both in accuracy & interpretability.

1. We constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval with an

in-process, iterative hard-negatives procedure that can be inspected.

2. We adapted a prototypical autoencoder classifier to be compatible
with time series data; allowing for tunable prototype diversity
and improved global and instance level explanations.

3. We learned a distantly supervised entity type system and data set for
use in training a Biomedical Interpretable Entity model whose
representations exist in a semantically meaningful vector space
& whose predictions may be diagnosed with an oracle method.
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