
Mostly Not Smiling to Mostly Smiling:
Predicting when a Yearbook photo was taken

Amin Anvari
UT Austin

Diego Garcia-Olano
UT Austin

Farzan Memarian
UT Austin

Abstract

A century of portraits is a historical image dataset that
comprises a large scale collection of yearbook portraiture
from the last 120 years in the United States that Shiry Gi-
nosar et al[3]. made public for the first time in 2015. The
dataset is labeled with the year that each photo is taken. In
this project, we train different deep (convolutional) mod-
els to predict the year a novel photo in the yearbook is
taken. We framed the task at hand in different frame-
works, such as classification, regression and a combina-
tion of both. We trained several networks and demonstrated
that VGG16 architecture works the best in our task. We
obtained test accuracy of 3.0% and mean L1 error of 4.5
years. At the end of this report, we demonstrate some of
the visualizations that we made to get insight in to what the
model is learning. The code for this project is available at
https://github.com/anvaribs/cs395t-f17

1. Introduction
A paradigm shift in Computer Vision tasks has oc-

curred in the past few years moving from systems based on
hand generated features to ones where features are learned
through the use of Deep Convolutional Neural Networks.
The process of determining the architecture for these mod-
els, the number and types of layers they contain, their acti-
vation functions, the associated hyper-parameters, methods
to avoid over fitting, and the subsequent training and fitting
can be quite time and labor intensive. One of the most pow-
erful ideas to come from deep learning is that its possible to
transfer knowledge from a network that has been trained on
a given task and apply that knowledge towards a separate
task. This process is called transfer learning[5]. Its then
beneficial to fine tune the weights of this combined network
for the task at hand. This process cuts down dramatically
on the amount of time needed to train a model.

In the following project, we were given a set of around
25,000 high school yearbook photos taken from between the
years 1905 and 2013 in the United States which have been
cropped and converted to gray scale. Our task is to predict

the year a yearbook photograph was taken using only that
image’s pixel values. We do so by taking a neural network
which is trained for image classification on the ImageNet[2]
dataset and then adapt it for our task. Figure 1 shows sample
images from the dataset and Figure 2 shows the distribution
of the data from the original paper’s dataset, our project’s
data has no regions and is a subset of the original data.

To this end, we use various pre-trained networks that are
available in open source deep learning frameworks such as
tensorflow and keras. A pre-trained network is simply a
saved network previously trained on a large dataset, typi-
cally on a large-scale image classification task. If this orig-
inal dataset is large enough and general enough, then the
spatial feature hierarchy learned by the pre-trained network
can effectively act as a generic model of our visual world,
and hence its features can prove useful for other computer
vision problems, even though these new problems might in-
volve completely different classes from those of the original
task.

For our task, we will use large convnets trained on Ima-
geNet dataset (1.4 million labeled images and 1000 differ-
ent classes). Since the ImageNet contains many different
classes and is not specifically portrait images, we decided
to fine-tune the network for our task.

We experimented with 4 different architectures.
VGG16[6], InceptionV3[7], Xception [1] and ResNet[4].
VGG16 architecture, developed by Karen Simonyan and
Sndrew Zisserman in 2014 proved to be the best performing
architecture for our face-to-age prediction task. Although
VGG16 architecture is much older compared to other
high-performing models, the ease of understanding what
is going on behind the scene and what network is learning
enabled us to train the network much better and get the
highest performance in terms of L1 error out of it.

We also concluded that the best framework to model the
problem is through classification with classes correspond-
ing to 104 years between 1905 to 2013 corresponding to the
labels that we have in our training and validation datasets.

1

Figure 1. Yearbook Photos for Men and Women 1900-2010

Figure 2. Distribution of portraits per year and region

2. Technical Section
The following section discusses how transfer-learning,

fine-tuning, hyper parameter tuning, different optimizers,
learning rates, regularization through data augmentation,
batch normalization and dropout were used in the training
and validation of our models.

2.1. Methods

As discussed earlier, we pose the task of predicting the
year each photo is taken using the frontal-facing high school
yearbook photos as a 104-way year-classification task be-
tween the years 1905 and 2015. We set aside about 5% of
the data as the test set and use the remaining 95% for train-
ing and validation. Note that the distribution of photos per
year is very unbalanced (figure 2).

We use the Keras implementation of the VGG, incep-
tionV3, Xception, and ResNet network architectures that
are pretrained on the ILSVRC dataset in all our experi-
ments. We fine-tune the final fully connected layers of the
networks on the yearbook training data to predict the year at
which a photo is taken. We train our networks for 40 epochs
(around 15,000 steps) using ADAM optimizer (LR = 0.001)
in the pre-training step and SGD with a very small learning
rate in the fine-tuning step. As we expected, fine-tuning on
the the yearbook dataset improves the L1 error from around
8-9 years to around 5 years.

Since the size of the training dataset was moderately

large, we decided to train the network in a pre-training and
fine-tuning fashion. In short, we have taken the knowledge
learned from an image recognition task on ImageNet dataset
and transferred it to the face-to-year prediction task. The
reason this is helpful is that a lot of the low level features
such as detecting edges and detecting curves, might help the
learning algorithm do better in our task.

We frame the problem as a classification, regression, and
combination of both to evaluate the effect of these choices.
We tried different loss functions. Since the pre-trained net-
works are originally designed to be used for classification
task, we started out by using a categorical crossentropy loss
function and framed the problem as a 104-way classification
task with a softmax layer at the output of the network.

Motivated by the fact that this loss function is ignor-
ing the inherent structure of the ordinal classes, we de-
vised some other loss functions to exploit the relationship
between different classes. We experimented with a pure
L1 loss function and also with a combination of categori-
cal cross-entropy loss function and L1 loss function.

For the L1 loss function, we tried both a loss that only
considers the class with maximum probability to calculate
L1 loss and also a loss function that is weighted average
of all the class predictions that softmax layer is outputting.
This is a better loss function since it take into considera-
tion the probability of all classes and also does not suffer
from the zero gradient. Following you can see all the loss
functions that we used:

loss1 = |yearp − yeart|2

loss2 = Cross Entropy(yp, yt)

loss3 = Cross Entropy(yp, yt) + C|yearp − yeart|2

loss4 = Cross Entropy(yp, yt) + C|yearp − yeart|
loss5 = Cross Entropy(yp, yt) + C‖yp − yt‖1

where C is a coefficient that determines the relative im-
portance of classification loss versus the regression loss. yt
is the one hot encoded vector of true label for the current
example and yp is the output of softmax. yearp and yeart
are the predicted year and true year respectively

The yearbook data was preprocessed via the same pro-
cedure as the original architecture and we additionally per-
formed standard data augmentation of the images to help
with our prediction task and to prevent overfitting. The
learning rate was additionally reduced via keras’ ReduceL-
ROnPlateau callback function which monitors the model’s
’val mean L1 distance’ and reduces the learning rate when
that value has stayed constant for a set number of epochs.

2

2.2. Hyperparameter tuning:

Here we describe systematically organizing hyperparam-
eter tuning process to find a good setting for the hyperpa-
rameters. One of the difficulties in deep learning is the sheer
number of parameters that the practitioner has to deal with,
ranging from the learning rate LR α, the momentum term β,
learning rate decay, mini-batch size, Adam: β1, β2, ε; num-
ber of layers, number of hidden layers for different layers,
mini-batch size, if using Adam optimizer: Adam: β1, β2, ε
The order that we tuned the hyperparameters: Learning rate
→ mini-batch size → hidden units number. After coming
up with good values for these hyperparameters, we tried
to do tuning for learning rate decay and we actually did
not tune, but set standard values for the momentum term
β = 0.9 and Adam parameters β1 = 0.9, β2 = 0.999,
ε = 10−8. Due to sheer number of hyper-parameters, in-
stead of doing a grid search, we decided to try to make a
random sampling search to more richly explore the set of
possible values and to make it more likely to find a value
that works well. We also used a coarser to finer search
scheme. So we started with a coarse random sampling first
and then zoomed in and sampled more densely within that
space. We tried to come up with an appropriate scale to
pick hyperparameters. For the learning rate hyperparame-
ter, we used a log scale for our grid. We experimented with
α = 0.0001, α = 0.001, α = 0.01 and α = 0.1. Since we
had enough computational resources thanks to Texas Ad-
vance Supercomputing Center, we decided to train many
different models using different architectures and different
hyperparameters in parallel

2.3. Batch Normalization:

Barch normalization makes the hyperparameter search
problem much easier, and makes the neural network much
more robust to the choice of hyperparameters and it enables
us to much more easily train even very deep networks. The
idea of batch norm is to apply the normalization process not
only to the input layer, but also to the values even deep in
some hidden layers in the neural network. We did the batch
normalization before the activation function. meaning we
normalized Z values rather than activations.

3. Evaluations

3.1. Benchmarking different architectures

Our evaluation runs on ResNet50 where all initially bad
so we did not pursue it farther. This could have been due to
its size and complexity, but because the other architectures
gave us pretty good results we focused on them, specifically
on InceptionV3 and VGG16.

Figure 3. Inceptionv3 with Categorical Crossentropy

Figure 4. VGG16 with Categorical Crossentropy

3.2. Best Model

In the end, our final model was based on the VGG16
architecture using ”categorical crossentropy” loss with the
adam optimizer and a learning rate of 0.001.

The confusion matrix for the training and validation
stages are shown. The plots are a little misleading because
of the color scale, i.e. the training plot has values off the
diagonal, but because of the scale ranging from 0 to 800,
values near 0 appear to be zero. We were able to get the
L1 error very low during training and this is reflected in the
training plot. The trick was being careful not to over fit dur-
ing this stage. For the validation plot, we see that the model
is still centered around the diagonal, but our L1 error is 4.5
years. The confusion mostly occurs between neighboring
years in the validation plot.

3

Figure 5. Xception with Categorical Crossentropy

19
05
19

10
19

14
19

22
19

26
19

30
19

34
19

38
19

42
19

46
19

50
19

54
19

58
19

62
19

66
19

70
19

74
19

78
19

82
19

86
19

90
19

94
19

98
20

02
20

06
20

10

Predicted label

1905
1910
1914
1922
1926
1930
1934
1938
1942
1946
1950
1954
1958
1962
1966
1970
1974
1978
1982
1986
1990
1994
1998
2002
2006
2010

Tr
ue

 la
be

l

Confusion matrix

0

100

200

300

400

500

600

700

800

Figure 6. Confusion matrix on training data

4. Extensions

In the following section, we catalog how we visualized
the important regions in the image used by the network and
what layers in our network learned. Additionally we bench-
mark the different architectures we ran experiments on, and
finally compare results for the different loss functions uti-
lized during our tests.

4.1. Visualizations

It is often said that deep learning models are ”black
boxes”, learning representations that are difficult to extract
and present in a human-readable form. While this is par-
tially true for certain types of deep learning models, it is
definitely not true for convnets. The representations learned
by convnets are highly amenable to visualization, in large
part because they are representations of visual concepts.

19
05
19

10
19

14
19

22
19

26
19

30
19

34
19

38
19

42
19

46
19

50
19

54
19

58
19

62
19

66
19

70
19

74
19

78
19

82
19

86
19

90
19

94
19

98
20

02
20

06
20

10

Predicted label

1905
1910
1914
1922
1926
1930
1934
1938
1942
1946
1950
1954
1958
1962
1966
1970
1974
1978
1982
1986
1990
1994
1998
2002
2006
2010

Tr
ue

 la
be

l

Confusion matrix

0

25

50

75

100

125

150

175

200

Figure 7. Confusion matrix on validation data

To understand what our networks our learning, we uti-
lized three very common visualization techniques:

1. visualizing intermediate convnet activations. This is
great to get an idea of the meaning of individual con-
vnet filters and how successive convnet filters trans-
form the input

2. visualizing convnet filters. This is a great tool to un-
derstand precisely what visual patterns each filter is re-
ceptive to.

3. Visualizing heatmaps of class activations in an image.
This is useful to understand which part of an image
where identified as belonging to a given class.

4.1.1 Visualizing intermediate activations

This gives a view into how an input is decomposed unto the
different filters learned by the network. These feature maps
we want to visualize have 3 dimensions: width, height, and
depth (channels). Each channel encodes relatively inde-
pendent features, so the proper way to visualize these fea-
ture maps is by independently plotting the contents of every
channel, as a 2D image.

For the purpose of this visualization, we will use one of
the test images, say yearbook/test/F/000002.png. Here is
the pre-processed image that we are going to feed into our
conv net (figure 5).

For the purpose of visualizing intermediate activations,
we built a multi-output model, which allows for one input
and one output per layer activation. Using this network,
we plot a complete visualization of all the activations in the
network. Here, we show only some of these activations in
our network (figure 9)

4

Figure 8. preprocessed test image

Figure 9. Visualizing intermediate activations

Visualizing individual intermediate activations show
that, the first couple of layers act as edge detectors, and ac-
tivations are retaining almost all of the information present
in the initial pictures. As we go higher up, the activations
become more abstract and start encoding higher level rep-

resentations. These representations carry more information
related to the class of the image.

4.1.2 Visualizing convnet filters

Next, we visualize the visual pattern each filter is meant
to respond to. This can be done with gradient ascent in
input space: applying gradient descent to the value of the
input image of a convnet so as to maximize the response
of a specific filter, starting from a blank input image. The
resulting input image would be one that the chosen filter is
maximally responsive to.

we will build a loss function that maximizes the value of
a given filter in a given convolution layer, then we will use
stochastic gradient descent to adjust the values of the input
image so as to maximize this activation value.

Here, we will visualize the first 64 filters in VGG16
in the first layer of each convolution block block3 conv1,
block4 conv1, and block5 conv1(figure 10).

This visualization shows us how each layer in a convnet
learns only a collection of filters such that their inputs can
be expressed as a combination of these filters. As we go
higher up, the filter bank gets increasingly more complex.

4.1.3 Heatmaps of class activations

Visualizing heatmaps of class activations helps us under-
stand which parts of a given image led a convnet to its final
classification decision. A ”class activation” heatmap is a 2D
grid of scores associated with an specific output class, com-
puted for every location in any input image, indicating how
important each location is with respect to the class consid-
ered. This is helpful for ”debugging” the decision process
of a convnet, in particular in case of a classification mistake.

Here, we take the output feature map of a convolution
layer given an input image, and weighing every channel in
that feature map by the gradient of the class with respect to
the channel.

4.2. Comparison of losses

To benchmark our los functions, we will show their
performance on our best model, which is built on top of
VGG16. Fig. 12 shows how each loss function affects the
performance of this model in terms evolution of accuracy,
loss and L1 score during the fine tuning phase.

The top three plots in Fig. 12 correspond to the loss func-
tion number 3 defined in section 2, i.e for every example,
the loss is the sum of the cross entropy loss between the
softmax output and the one hot encoded vector of true label
plus the square of the difference between the true year and
the predicted year. In this way we can give different weights
to the loss caused by cross entropy and the loss caused by
the difference between the true year and the predicted year.
As can be seen, the training accuracy increases with each

5

Figure 10. Visualizing convnet filters, block3 conv1 (top image),
block4 conv1 (middle image), and block5 conv1 (bottom image)

Figure 11. Heatmaps of class activations

epoch and the training loss and the L1 score reduce with
epoch. At the end of the 20th epoch we have fitted the train-
ing data almost perfectly and the validation L1 score has
dropped to above 5 years which is satisfactory.

The middle three plots correspond to loss number 4 de-
fined in section 2. i.e for every example, the loss is the sum
of the cross entropy loss between the softmax output and
the one hot encoded vector of true label plus the absolute
value of the difference between the true year and the pre-
dicted year. The overall trend is the same as the previous
loss except the validation accuracy does not change much
during the fine tuning stage.

Finally the bottom three plots correspond to the loss
number 5 defined in section 2. Essentially the loss incurred
by every example is the cross entropy loss plus the L1 norm
of the difference between the softmax output and the one
hot encoded vector of the true label. For this loss, like the
previous two the training accuracy keeps improving as we
go through the epochs of training. The validation error how-
ever gets worse over the fine tuning stage. Although the val-

6

idation error keeps in creasing the validation mean L1 score
improves and gets to a score comparable to the other two
losses.

So in conclusion all the loss functions we tried were
yielding good results after tuning their parameters (in this
case the relative weight of the two terms of each loss)
through grid search. The only loss function that did very
poorly was pure MSE. This was not intuitive to us as we
expected MSE to perform better. Categorical cross entropy
loss does not capture the structure of the data, for example
if the true label is 1950 and we make a wrong prediction,
it does not make any difference with the cross validation
error if we predict 2000 or 1951 but these two predictions
are very different in terms of how accurate they are. This is
why we were expecting to get good results by using MSE
because it considers the structure of the data. Still we were
able to see satisfactory results by combining the classifi-
cation cross entropy loss with different sorts of regression
losses, including MSE.

5. Conclusion

In this work, in order to make accurate predictions on the
year photos were taken, we used several deep convolutional
neural network architectures. Instead of trying to build a
model from scratch and training it on the limited amount of
data we had access to, we took advantage of the availability
of the most successful networks trained on large amounts
of images. We used transfer learning for this purpose, i.e.
we took a trained ConvNet, froze the convolutional layers,
replaced the fully connected layers and trained the model to
learn the weights for the fully connected layers. Then we
performed fine tuning on the last few convolutional layers.
Using this approach we reached an accuracy of 3.0% and
mean L1 error of 4.5 years on test data on our best model
which is build based on VGG16.

In conclusion, using transfer learning really boosts the
performance of the model if we have access to convolu-
tional networks that are trained for the same type of data.
In this case we used deep ConvNet that were trained on
ImageNet so many of the features that those models have
learned on other images can be useful for our task which
focuses on a specific type of image, namely portraits.

The other important issue in training deep ConvNets is to
come up with a suitable loss function that takes advantage
of the structure in your data. In addition to the loss functions
available through Keras, we devised new cost functions by
combining regression and classification losses. We believe
the choice of loss function has a significant effect on the
performance of the model. For this problem, the best cost
functions were those that used a weighted sum of cross en-
tropy loss and some metric to measure the distance between
the prediction and true label in a regression fashion.

References
[1] F. Chollet. Xception: Deep learning with depthwise separable

convolutions. CoRR, abs/1610.02357, 2016.
[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[3] S. Ginosar, K. Rakelly, S. Sachs, B. Yin, and A. A. Efros.
A century of portraits: A visual historical record of american
high school yearbooks. CoRR, abs/1511.02575, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[5] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
CNN features off-the-shelf: an astounding baseline for recog-
nition. CoRR, abs/1403.6382, 2014.

[6] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[7] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wo-
jna. Rethinking the inception architecture for computer vision.
CoRR, abs/1512.00567, 2015.

7

Figure 12. Evaluation of our top model on different loss functions. The top three plots correspond to categorical cross entropy plus
mean squared loss, the middle three correspond to categorical cross entropy plus mean absolute error and the bottom three correspond to
categorical cross entropy plus mean absolute error on years

8

