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1. Introduction
Adversarial attacks have as their canonical example that of
adding pixel noise to an input image to modify it in such
a way that is imperceptible to humans and simultaneously
causes a model to change its classification of the image com-
pared with its pre-change classification. Identifying such
”attack examples” can be used to help augment a dataset
to make it more robust (Ilyas et al., 2019). Counterfactual
explanations are similar in that they attempt to perturb an in-
put example in some ”minimal” way that causes a model to
change its classification for it. However the purpose in this
instance is not to fool or ”attack” a model, but rather to find
which sort of minimal, semantically meaningful changes
lead to this change. This minimal change then can be used
to explain the difference between two classifications for a
given input case. For instance, given that someone had been
denied a loan (class 1), a counterfactual would say would
set of changes would have led to the person’s loan being
accepted (class 2), thus explaining the decision.

In this paper, we propose to use reinforcement learning
techniques to find counterfactual explanations for an input x
and a model f(x). We think of counterfactual explanations
as the path taken from from a starting state (current input x)
to reach a set of goal states (points with different predictions
that are “close” to our original input). The problem can be
thought of as an “n-dimensional gridworld” with the current
input x as the start state and multiple goal states. The aim
would be to use the learned policy to find the shortest path
to any goal state.

The problem of finding counterfactual c for a input x for a
black-box model is essentially a optimization problem as
shown by (Sharma et al., 2019)

min
c
d(x, c)

s.t.f(c) 6= f(x)
(1)
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We think there are the following advantages to a guided Re-
inforcement Learning (RL) search to find a counterfactual or
an adversary as compared to using Black-box optimization
algorithms

• Generalization across different inputs: Black-box
optimization methods treat each input point indepen-
dent of each other. (Dai et al., 2018) used Q-Learning
to find adversarial examples for graphs and showed
that parameterization of Q* can lead to generalization
across unseen graph nodes in the test dataset.

• Complex Constraints and Distance measures: In-
herent to the idea of Counterfactuals is closeness to
the original input point. Closeness is defined differ-
ently for differently types of inputs. For graphs (Dai
et al., 2018) defines closeness in terms of changes to
the neighbourhood of nodes. For text, (Vijayaragha-
van & Roy, 2019) use semantic similarity. Instead of
defining constraints on how to change inputs to find
counterfactuals, the reward function in RL can be used
to guide the search process.

• Speed and Number of Function Calls: Reinforce-
ment Learning algorithms might be able to find coun-
terfactuals for a single point with less function calls
to the classifier. Our intuition is RL learns from in-
episode transitions and learn preferences based on fea-
ture importance. This will eventually lead to finding
the counterfactual with less function calls.

• Gradient Agnostic adversarial search Most adver-
sarial methods require access to the gradient or calcu-
late an approximation of the gradient. RL does not
need access to gradients to find adversaries.

In the rest of the paper we show how to use RL techniques
for tabular1 and text2 data cases3 and discuss their merits
and weaknesses. In this paper, we try our best to be consis-
tent with our usage of adversarial point and counterfactual.
Both denote the solution to Equation 1 but are referenced
differently in different domains.

1code at: https://github.com/adityajain93/RLFinalProject
2code at: http://diegoolano.com/files/rl text counterfacs.zip
3video at: https://bit.ly/35aR80Z
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2. Related Work
A recent paper (Sharma et al., 2019) used genetic algo-
rithms to discover counterfactuals for a given dataset and
black box model. Although effective, the use of genetic
algorithms to discover counterfactuals is extremely slow as
each point is treated independently. The system does not
include text examples precisely because of how infeasible
GAs are for that setting generally. RL could help speed up
such work as we believe regions of input points will have
similarities in the policy taken to find counterfactuals. Being
able to describe the policy and path for a given input case
will go towards a counterfactual given a blackbox model is
important from an interpretability standpoint and not some-
thing given by a treating this as a one step optimization
problem. .

The literature in the adversarial attacks domain is more ma-
ture than the counterfactual explanations one at the moment,
but as the domains have much overlap, we can leverage and
adapt many results from the former for our problem.

2.1. Text Specific Prior work

”White-box” adversarial text which leverage a model’s gradi-
ents are explored in (Ebrahimi et al., 2018) and particularly
for sentiment classification in (Tsai et al., 2019). Exploiting
such information allows these methods to quickly identify
which input words and in which direction they should be
perturbed to generate an adversary. The question of how to
do the perturbation however is still largely open as its quite
easy to create nonsensical, incoherent or trivially obvious
changes which switch a model’s classification.

Although its clearly preferable to explain a model’s deci-
sions when you have access to its internals, especially for
”high stakes” models (Rudin, 2019), our focus here how-
ever is on the black-box case where we do not have such
access to a model’s internal architecture. The method in
(Zhao et al., 2018) utilizes Generative Adversarial Networks
(GANs) to generate black box adversarial attacks though
training GANs are known to be quite brittle in general, there
are concerns about what distribution is being learned by the
generator and they do not easily allow for much control. A
black-box technique to generate semantically and syntac-
tically similar adversarial examples by word replacement
via a genetic algorithm (GA) is proposed in (Alzantot et al.,
2018) and although its quite flexible in the sort of adver-
saries that it can create, its very costly in terms of time and
computation as different evolution-evaluation generation
calculations need to occur for each new input for which
adversaries are desired. This GA approach and its limita-
tion for the highly dimensional text and image cases are
also shown in (Sharma et al., 2019) which provides a good
overview of counterfactual explanations.

Using Reinforcement Learning to learn policies that can
quickly guide searches towards semantically coherent coun-
terfactuals could be quite useful and to the best of our knowl-
edge has not yet been done. RL methods have been used
in the NLP domain for applications such as active learn-
ing (Fang et al., 2017), improving dialog system models by
guided coherence rewards (Zhang et al., 2018), style trans-
fer without parallel corpora (Gong et al., 2019) and learning
negation rules for identification purposes (Pröllochs et al.,
2019). In (Li et al., 2016) the authors generate black-box
adversaries via an RL approach which finds words that are
”important” for an input text to generate a label and then use
”erasure” techniques that only allow for pertubation via re-
moval of words, and thus doesn’t allow for much flexibility
in types of counterfactuals that could be created. Another
approach of learning black-box character level adversarial
text attacks using Monte Carlo Tree Search (MCTS) has
been proposed in (Gao et al., 2018a) which is based on
applying RL techinques to a prior work (Gao et al., 2018b).
Although interesting from an RL perspective this character
level approach doesn’t allow for the generation of mean-
ingful counterfactuals as they use MCTS here for finding
the most important few words to perturb, but then perform
a homoglyph attack by replacing one character in each se-
lected word with a symbol of identical shape which leads to
effective attacks, but nonsensical text output.

There are two works that are most similar in nature and
approach to ours, although in an adversarial context. In
(Vijayaraghavan & Roy, 2019) the authors propose black-
box adversarial text generation with a deep RL framework
capable of generating semantics-preserving perturbations.
Here an auto-encoder is first trained to perturb words and
characters via paraphrase generation or character pertur-
bation respectively. They then follow a simpler modified
version of the general framework from (Papernot et al.,
2016) where the latent space of this AE model is used to
generate attention weights which can be used on hold out
training examples from the target distribution to train a ”sub-
stitute” network that mimics the original network they are
targeting. These weighted examples query the ”targeted
models” and use its output as its true label to train the substi-
tute network. Once the substitute network has been trained
this models parameters are then finally fed into a self-critical
policy gradient training REINFORCE like strategy outlined
in (Rennie et al., 2016) to fine tune its results. . The authors
do pre-training on 5 million language pairs for paraphrase
generation whereas we propose to use the language models
BERT (Devlin et al., 2018) fine tuned on an IMDB movie
reviews dataset for word perturbations and eliminate the use
of character level perturbation entirely since such changes
don’t necessarily lead to ”close” perturbations in a semantic
or coherency sense necessitated by the counterfactual gener-
ation task. Additionally, and most importantly, rather than
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leverage an AE model to learn attention weights to guide the
search space and use RL only at the end to fine tune initial
results, we posit that an RL centric approach may do better
from the beginning by traversing examples from a dataset of
similar nature (ie, movie reviews not seen by our sentiment
classifier, so truly black box unlike this one) and discovering
whether or not a given word should be substituted given the
context of the surrounding sentence and providing rewards
for choices that lead towards the classifier’s manifold.

The other work similar to ours in nature (Jin et al., 2019) fo-
cuses on assessing the robustness of convolutional, recurrent
neural networks along with pretrained BERT embeddings
to adversarial attacks. Of interest to our case is their pro-
posed TextFooler system that they use to generate black
box adversaries which on top of changing the prediction
of a target model, show ”semantic similarity” as judged by
humans, and ”language fluency”, ie, generated examples
should look natural, grammatical and fit within the surround-
ing context, both desiderata of our counterfactual generation
system. Their system first identifies ”important words” and
then for each identifies suitable replacement word candi-
dates via a procedure of synonym extraction, equal part of
speech enforcement and semantic similarity checking via
use of the Universal Sentence Encoder (Cer et al., 2018) to
encode the original and perturbed sentence into high dimen-
sional vectors whose cosine similarity score can serve as
an approximation of semantic similarity. The authors then
simply choose the candidate with the largest similarity to
use, whereas we are hoping to largely piggy back on some-
thing similar to the aforementioned approach and code4, but
using a guided RL approach to improve these results both
in terms of convergence time and more importantly in the
context of counterfactuals explanations.

3. Counterfactuals for Tabular Data
The tabular case as referenced here looks at datasets which
can be represented in a table. We motivate the approach with
a simple toy example as described below. We then increase
the complexity of the problem by increasing dimensions of
the input dataset and the complexity of the classifier f(x).
In all experiments, we look at binary classification and look
at identifying adversarial policy for points in label ’0’ to
change prediction to label ’1’. Identical experiments can be
run transitions from label1 −→ label0.

3.1. Toy example: Linear

Consider the binary classifier as described below. The input
data consists on randomly generated points (x1, x2) in a 2-D
space in [0,1]. The dependent variable (Y ) is binary and ’1’
for all points with x1 > 0.5 and ’0’ for x1 <= 0.5. For each

4https://github.com/jind11/TextFooler

point we want to find the closest possible counterfactual
point such that its prediction is not equal to the prediction
of the original point. For example, for x = (0.32, 0.5)
, the prediction is ’0’, the counterfactual point would be
c = (0.52, 0.5) with prediction ’1’. We use RL to identify
best possible path to find the counterfactual. For the binary
toy classifier f(x) described above, the optimal path :-

• For points with prediction ’0’ would be to increase x1

until x1 > 0.5 i.e go right

• For points with prediction ’1’ would be to increase x1

until x1 < 0.5 i.e go left

We frame this problem as a RL problem with its environment
described below.

Figure 1. Toy Dataset with a linear decision boundary at x1 = 0.5.
All the points to the left of x1 = 0.5 have label ’0’ and all points
to the right have label ’1’

3.1.1. ENVIRONMENT

• State space: is the input dataset state space here
(x1, x2)

• Action space: consists of choosing which input feature
to change and whether to increase or decrease it by a
fixed increment δ. In the toy example, we have four
actions: ’0’: decrease x! by δ, ’1’: increase x1 by δ,
’2’: decrease x2 by δ, ’3’: increase x2 by δ,

δ is a user defined input and is 0.1 for the toy exam-
ples. An intelligent way to define it would be based on
standard deviation.

• Reward function: Each step gets a reward of -1.0 (rstep)
The agent gets +100 (rgoal) reward for reaching the
goal (when current prediction is different from initial
prediction). The agent gets a reward -10 (rwall) when
it goes out of bound for any input feature.

• Classifier f(x): We look at a model agnostic, black-
box setting of finding counterfactuals. We thus do not
have access to model internals or gradients. This is
an advantage of our approach as compared to other
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methods of finding adversaries. For the toy example,
we train a XGBoost (Chen & Guestrin, 2016) classifier
as the black-box classifier which we query to learn an
adversarial policy of finding counterfactuals.

3.1.2. EXPERIMENT 1: TILE CODING AND Sarsa(λ)

We used tile coding to linearly approximate Q-Value func-
tion and used Sarsa(λ) to find optimal policy for the linear
toy example. We used the following parameters after trial
and error

• λ = 0.02. We found smaller values to be effective.

• γ = 0.98 to motivate finding closest points

• α = 0.1. Found using trial and error

• TileCoding: We experimented over different num-
ber of tiles [2, 10] in each dimensions while keeping
numbertilings = 1. The number of tiles in each di-
mension were consistent. Small number of tiles (2,3)
seems to find the optimal policy in the least number
of iterations. We observed that having 2 tiles is rela-
tively unstable over many iterations. This we think is
problem specific since the decision boundary of the
toy example is at x1 = 0.5 Increasing the number of
tiles to 9 or 10 overfits and thus has poor convergence.
We also see that having number of tiles as 3 in each
dimension offers the best solution here. See Fig 2.

Figure 2. Performance of Sarsa(λ) with a single tiling and dif-
ferent number of tiles as shown in the figure. The performance is
captured at different points during the training by averaging returns
of 50 randomly generated initial states with prediction ’0’

Using Tile Coding and Sarsa(λ) the optimal adversarial
policy to find counterfactuals for points in with initial pre-
diction ’0’ was to increase x1 by the unit increment δ (i.e.
go right) which indeed is the optimal policy in the toy ex-
ample. We faced scalability issues when using Tile Coding
in a similar setup for increasing dimensions of input dataset.
We thus also looked at Neural Net function approximators.

3.1.3. EXPERIMENT 2: NEURAL NETS AND REINFORCE

We used function approximation for Q-Values using Neu-
ral Nets and learned an optimal adversarial policy to find
counterfactuals. using REINFORCE. The architecture of
the networks and the parameters were

Figure 3. Convergence results for REINFORCE with and without
baseline for the linear toy example as described in Fig 1

• Policy and Value network, we used a feedforward neu-
ral net with 2 hidden layers with 32 nodes and RELU
activation. The final layer for the policy network was
a softmax over all actions while the final layer for the
value network had no activation

• α = 3e − 4 and γ = 1.0 worked well with default
parameters for Adam optimizer

Convergence results for REINFORCE with and without
Baseline for the toy example is shown in Fig. 3. We also
tested over a grid of points and obtained optimal actions for
those points (see Fig. 4).

3.2. Toy Example: Non Linear

The Linear Toy example above show encouraging results.
Next, we increased the complexity of the decision boundary
and consider the case of non-linear decision boundary as
illustrated in Fig 5. Here the decision boundary is square
with all points within 0.15 ≤ x1 ≤ 0.85 and 0.15 ≤ x2 ≤
0.85 with label ’0’ and all other points with label ’1’. The
values were chosen to have almost equal number of points
for both classes.

3.2.1. EXPERIMENT 1: TILE CODING AND Sarsa(λ)

To experiment with Tile Coding and Sarsa(λ) for the non-
linear toy example, we used the the same parameter values
as in the linear toy example. We also experimented for
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Figure 4.Optimal actions obtained from the Policy learned by
REINFORCE over a grid of points with initial prediction '0'

Figure 5.Non Linear Toy dataset in a 2-D plane with all inside
purple points having a prediction '0' and all outside yellow points
having a prediction '1'

different number of tilings1; 2. As seen in Figure 6, we
see Tile Coding with 1 tiling and 3 or 4 number of tiles
in each dimension performs well and is stable. In Fig. 7,
we can also see the optimal actions for a grid of points
generated across the 2-D input space with prediction '0' for
Tile Coding function approximation with 1 tiling and 4 tiles.

Figure 6.Performance ofSarsa(� ) with a 1,2 tilings and different
number of tiles for the non-linear toy dataset. The performance is
captured at different points during the training by averaging returns
of 50 randomly generated initial states with prediction '0'

Figure 7.Optimal actions obtained from the policy learned by
Sarsa(� ) over a grid of points with initial prediction '0'. The
red square denotes the decision boundary with all points outside
having a label '1' The results are for Tile Coding with 1 tiling and
4 tiles

3.2.2.EXPERIMENT 2: NEURAL NETS AND REINFORCE

Using similar setup as for the linear toy example, we looked
at neural net based Q-Value approximation along with RE-
INFORCE with baseline only. We ran into convergence
issues where the algorithm converged to a local minima.
For all points in the testing grid, similar to the grid used
in Fig 7, the algorithm converged to only one action out of
left, right, up, down which was randomly selected based on
initialisation. We hypothesized that the algorithm was not
exploring enough and getting stuck in a local minima.

To address this challenge, we added an� � greedypolicy
with a � = 0 :2 and trained it for 6000 episodes. The results
were similar to Fig 8.
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Figure 8.Converge issues for REINFORCE and Neural Net ap-
proximation for Non Linear Toy Dataset

3.3. Increasing Complexity: Dimensions

In the previous sub section we increased the complexity of
the problem by introducing a non linear decision boundary.
Now, we look at increasing the dimensions of the input state
space from a 2D to a 8D input space. For these experiments,
we use the equivalent simple linear decision boundary of
x1 > 0:5 for label '1' andx1 < = 0 :5 for label '0'. Here, we
only looked at neural net based function approximators since
tile coding based approximators were increasingly slow as
input dimensions increased rendering them impractical.

Figure 9.Convergence of REINFORCE with Neural Network func-
tion approximation for increasing dimensions

3.4. PIMA Diabetes Dataset

We further increased the complexity by looking at a real
world problem of �nding counterfactuals for the PIMA Di-
abetes Dataset (Smith et al., 1988). The dataset consists
of continuous features such asGlucose, BMI etc.and the
outcome is a whether the person has diabetes or not. We
looked at �nding a adversarial policy to �nd counterfactuals
using Neural Nets and REINFORCE for the label '0' or no
diabetes. The solution setup was:

� Policy and Value Network: We used a similar feed
forward layer as used in previous experiments. Here,
due to higher dimensional input space, we had 64 nodes
in the hidden layer as compared to 32 nodes earlier.

� Classi�er: We trained an XGBoost classi�er (Chen &
Guestrin, 2016) on the input dataset. Here unlike pre-
vious toy examples, we do not know the true decision
boundary. The classi�er had an AUC of 0.86.

� Reward: To to avoid exploding gradients, we also
scaled the reward function by 0.1 leading tor step =
� 0:1, r goal = +10 andr wall = � 1

As can be seen in Fig 10, the reward increases with number
of iterations. This implies, that the policy learned can �nd a
counterfactual point in lesser number of steps.

Figure 10.Convergence of REINFORCE with Neural Network
function approximation for PIMA Dataset

3.5. Discussions and Future Work

The tabular experiments discussed above give us a deep
insight into potential pitfalls on using RL to �nd counter-
factuals. Two major issues we found were: (1) Coming
up with a viable exploration strategy as seen in the case
for non-linear toy example using REINFORCE (2) Conver-
gence for neural net based function approximators as again
seen in the non-linear toy example. Both these issues are
tied to each other since a viable exploration strategy will
lead to faster convergence. In the future, we would like to
try other policy gradient methods with different neural net
architectures to do an in-depth study. On the other hand,
there are numerous possible use cases and advantages for
a well learnt adversarial policy. Finding counterfactuals
for new points is faster. The optimal actions for a state (s)
can be used to de�ne local feature importance for state (s).
The adversarial policy can also be used as input to other
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adversarial methods. Finally, the reward for each state can
be interpreted as a score of how dif�cult it is for a point to
change its prediction and thus can be related to discrimina-
tion and fairness measures by looking at average rewards
across different protected attributes such as race, gender if
present in the original dataset. Based on the discussion and
the challenges, these are concrete future directions of work
that we think are worth pursuing :-

� Compare counterfactuals for the PIMA Dataset as gen-
erated by the method above and the Genetic Algorithm
based approach described by (Sharma et al., 2019) in
terms of quality of counterfactuals and time taken to
generate those.

� Explore other environment setups with continuous ac-
tions, variance based unit-steps in each dimension, in-
telligent initialisation and composite actions (changing
two or more dimensions at a time)

� Experiment with other state of the art Policy Gradi-
ent methods such as Soft Actor Critic (Haarnoja et al.,
2018) since it does lead to a diversi�ed policy by max-
imizing entropy as well.

The code for the above experiments can be found here
https://github.com/adityajain93/RLFinalProject.

4. Counterfactual Generation for Text

The approach we will outline is applicable to any text clas-
si�cation system, but to help guide discussion, we will
concretely consider the task of converting movie reviews
labeled as “negative” into “positive” ones where our envi-
ronment has access to a blackbox sentiment classi�er which
given a movie review, returns “positive” or “negative”.5

4.0.1.DATASET

The dataset we will leverage for experiments comes from
(Kaushik et al., 2019) and is composed of 2440 movie re-
views that were augmented by humans who manually cre-
ated counterfactuals for each review by changing a negative
review to be positive and then adding that review to the orig-
inal dataset for a �nal size of 4880 examples. In addition to
standard distance and coherency evaluation methods, this
dataset will allow us to compare the counterfactuals our
system generates to those generated by humans.

4.0.2. DIFFERENCES FROM TABULAR CASE

Generating counterfactuals for text inputs differs from the
approach taken in the tabular discrete case of the prior sec-
tion in a number of ways.

5The code for the above experiments can be found here
http://diegoolano.com/�les/rltext counterfacs.zip.

First, the number of features (ie word tokens) can differ
in each movie review example the agent sees thus making
our action space size variable if we used the approach from
the tabular case which is problematic and can't generalize.
Second, as we our dealing with a black box model and
don't have access to its gradients, there is no “unit way” to
change a word in the direction of the classi�cation manifold.
Finally, the issue of semantic meaning and coherency plays
a great role in the evaluation of generated counterfactual
texts. In the tabular case there are minimum and maximum
values for each feature ( or �xed set of categories in the
categorical case) which makes it possible to constrain the
agent's search space by constructing an environment that
gives negative rewards for going outside of it and the �nal
evaluation of the “goodness” of a counterfactual can be
calculated as simply a distance between it and the original
input example. In the text case however, its possible for a
generated counterfactual to be near the input sentence in
terms of distance, but to be an incoherent string of tokens
which lacks semantic meaning.

4.1. Problem setup and Technical Details

In order to handle the 3 issues of variable action space sizes,
black box word substitution generation and semantic and
coherency enforcement, we propose the following setup:

� State space: Each state is an vector of the concated
embeddings of the ”current word” being considered,
the current sentence ”context” and a one hot encoding
of the current word's part of speech (POS). BERT was
trained using 768 dimensional embeddings so both
the current word and context are of that size while
the POS is 20 dimensional ( as there are that many
types such as NOUN, VERB, etc ). Thus each state
is a 1556 dimensional vector[ word, context,
word POS] . On initialization the agent is given the
embedding combining the �rst word of the �rst review,
the full review and the POS.6

� Action space: Discrete binary action of ”substitute” the
current word being considered or ”skip” it. Whereas
we had initially planned on using a feature importance
method like SHAP (Lundberg & Lee, 2017) that does
not rely on a model's gradients to provide weightings
to each word and then have the agent select from them,
the variable number of tokens per review, meant a
variable action space which is problematic. Thus as
suggested by Professor Neukeum, we feed the words of
a review sequentially per step of the episode in hopes
that given the word representation, its context sentence
representation and its POS, the agent will learn via

6In actuality we are also passing along the text version of these
features to allow for interpretability, but the Policy and Value
functions are being passed the embedding )
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our rewards whether its bene�cial to substitute the
current word given its context or not to get towards the
counterfactual. Importantly, once a word is substituted
or skipped, the environment goes to the next ”non-stop
word” in the updated sentence (if action=substitute)
and this next word, its part of speech and the updated
sentence context form the next state representation.

� Reward function: The reward is based on the cosine
distance between the embedding of the original sen-
tence and the current sentence which is between 0
and 1 and whether the sentiment of the review has
changed. If the current word is ”skipped” a reward of
zero is given. If the word is ”substituted” the reward is
min (4:5; exp(� log(cosine distance)) � 2) � 3. This
imposes a range of roughly 10 to -5 reward based on
distance, but particular accounts for how many dis-
tances are within 0 and 0.1. Once a counterfactual is
reached, a reward of [100 - DM * cosinedistance] is
given where DM is a distance multiplier we can tune
for how much to penalize the �nal sentences distance
from the input review. For instance at DM=20, the
�nal reward is between 100 and 80. We additionally
set maximum numbers of iterations and substitutions
allowed and if a counterfactual is not discovered by
that moment, a reward of -100 + (1 / cosinedistance
) is given to penalize against not �nding a counterfac-
tual but penalizing less if the �nal sentence is near the
original input.

We implemented this as a custom environment in
Open AI Spin Up and the brunt of this function-
ality is in counterfac env.py located within the
envs/counterfacs/ folder.

4.2. Sentiment Model, Substitution mechanism and
POS tagger

We utilized a pre-trained BERT uncased language model to
train a sentiment analysis model on the ACL IMDB movie
reviews dataset7. See the �lesbert tflow192.py and
eval with tf192.py for more details on training and
evaluation, but essentially training examples are fed through
BERT and its �nal pooled output layer is then fed through a
dropout layer to prevent over�tting and then softmaxed over
logits of size 2 [Negative and Positive reviews]. Uncased
just means all tokens are lowercased during training. In tests,
we saw ”uncased” gave us better performance, around 92.2%
accuracy on the provided test set compared with 90.5%
on the cased one. We observed similar accuracy patterns
running the model on our counterfactual data set where the
uncased sentiment model gives an overall accuracy of 91.5
with the following confusion matrix. See the APPENDIX

7http://ai.stanford.edu/ amaas/data/sentiment/aclImdbv1.tar.gz

for examples of a few input data and their human generated
counterfactuals along with some false positive and negatives
examples our classifer got wrong.

TN: 2263 FN: 177
FP: 240 TP: 2200

For the substitution mechanism we began with thenlpaug
library8, and slightly modi�ed it, particularly its Contex-
tualWordEmbsAug functionality to use it as a wrapper to
query BERT with the current word and its sentence context
( with the word MASKED out ) which allows us to �nd the
most probable candidate words given this context. The idea
here is we will substitute a given word with similar words in
distance so that we don't make any large jumps between sen-
tences and jitter our way towards a solution slowly. Its easy
to change the sentiment of a sentence greatly by changing
”awful” to ”amazing” and thats what we are trying to avoid.
When the substitute action is taken, we retrieve the top �ve
candidates returned by the model and then �lter them based
on part of speech alignment between the current word and
candidates as a way of enforcing some sort of grammati-
cality and coherence (ie, substitute verbs with verbs, nouns
with nouns ). Additionally in experiments, we noted that
the BERT model usually includes the current word in its
top candidates and other words already in the sentence or
prior substitutions so we keep track of these ”prior words”
and �lter them to create more diverse substitutions with less
repetition. The �ltered list of candidates is then weighted ac-
cording to their probabilities and then one is sampled from
the weighted distribution. Importantly we do not account
for cosine distance when selecting candidates as doing so
could make learning harder for the RL agent.

For the POS tagger we use theflair (Akbik et al., 2018) li-
brary and speci�cally the ”pos-fast” version which includes
a lesser number of more broad tags, but is considerably
faster. The full version ”pos” includes Proper Nouns which
we found to be quite important in this task and might use for
future work. We considered possibly using its named entity
recognition (NER) capabilities as well to avoid changing
proper nouns such as movie titles or actor names, but that is
left for future work.

4.3. Algorithms

As simple baselines, we utilize the REINFORCE and REIN-
FORCE with baseline policy gradient methods whereby we
pass in our state representation directly into a Policy Net-
work to determine our actions. These network architectures
and their hyper parameters are the same as those described
in Section 3. Although this architecture might seem small
given the size of our states, the BERT representations are
learned over massive amounts of data so its hoped the net-

8https://github.com/makcedward/nlpaug
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work learns and updates (”�netune”) these values effectively.
We then intended to explore the use of Open AI Spin Up's
(SpinUp, 2019) implementations of Twin Delayed DDPG
(TD3) (Fujimoto et al., 2018) and the Soft Actor Critic
(SAC) (Haarnoja et al., 2018) methods9 10 as suggested in
feedback from reviewers, but evaluation and reward setting
tended to be more dif�cult than originally planned, and thus
we left this for future work and instead opted for analysis of
our baseline results. These two algorithms are more stable
and less heavily reliant on �nding the correct hyper param-
eters compared with REINFORCE with baseline as this
algorithm can continuously over estimate the Q values of
its critic (value) network causing its estimation of errors to
build up over time and leading the agent into a local optima
or experience forgetting ( depending on how gamma is set).

4.4. Results

In the following we show results for the REINFORCE algo-
rithm with and without baselines running for 100 episodes.

We can see that the algorithm has problems converging
in 100 episodes, but has a general upward trend, and that
each episode takes quite long ( about 180 seconds without
a baseline and 194 with a baseline ). This shows that the
baseline value function is not doing a great job of stabilizing
the results.11 A positive result though is that 100% of the
episodes without baseline and 96% with a baseline were
able to �nd counterfactuals within the allowed maximum
time and iterations. However the environment was setup to
be quite generous in how long it allowed an agent to search

9https://spinningup.openai.com/en/latest/algorithms/td3.html
10https://spinningup.openai.com/en/latest/algorithms/sac.html
11On other runs the baseline method consistently improves

whereas without it, the agent can hit a point where it fails to
improve and stays stuck. See appendix C

for a counterfactual before stopping and penalizing it. In
certain cases, it may not be possible to repeatedly query a
model for which we are trying to generate counterfactuals
and thus its better for such a model to end sooner. To that
end, we look at how many of the episodes ended by a given
number of steps ( with the caveat that for steps where ”skip”
action is taken in the sentiment model is not queried, so this
should be viewed as an upper bound on model calls )

We note that after 50 steps 94% of the REINFORCE ”with-
out baselines” episodes found a counterfactual while only
81% of those with the baseline did.

RL generated counterfactual text examples for the last 3
episodes for both algorithms are provided in the APPENDIX
along with the original negative review, the distances from
each RL counterfactual and the original, and the human
created counterfactual. We can see that the generated texts
make sense in snippets, for instance in the 2nd example,
changing ”I found it inane and stupid” to ”I thought it funny
and lovely” in the without case and ”I call it scary and dan-
gerous” in the with base case case. However the generated
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counterfactuals don't have overall semantic coherence, for
instance in the third case we see ”this one is also very bad.
in comparison, it is the best horror �lm i have made”. Also
in some cases due to the structure of our reward mechanism
and our environment always starting on the �rst word for
consideration, the changes made are only towards the begin-
ning of the sentence and are quite big leaving the rest of the
sentence in tact. That said the examples generated are not
bad, are produced relatively quickly compared with other
methods and their exist pathways for improvement that we
describe next.

4.5. Future Work

Here we are areas we wish to further examine to improve
this work and which we'd appreciate feedback if possible.

� We noticed that our sentiment classi�er was not well
calibrated, ie, the probabilities it returned tended to
be extreme towards one class or the other. Creating a
substitute network based on the sentiment target model
that we could then calibrate (Guo et al., 2017) would
allow us to additionally changing the threshhold of our
classi�er to be more con�dent before giving a review of
”positive” which could lead to better sentence cohesion.

� We noticed that changes to proper nouns occurred in
a way that hopefully using the fuller and slower ”pos”
tag would learn to not do, though more likely it seems
a rule of the environment would be to disallow substi-
tutions on such words since it completely changes the
overall meaning and is something humans would never
due (ie, changing ”the Lion King” to ”the Jungle Book”
completely changes what a movie review is about)

� The importance of how to best setup our environment's
reward mechanism is still an open question that ne-
cessitates further study. We initially had a simpler
mechanism, but it didn't truly re�ect how we wanted
situations to be rewarded.

� In terms of states being presented to the agent, we were
unsure whether its better to present words sequentially
from left to right ( and then starting again from the
beginning ) or whether its better to have the environ-
ment randomly select the words to process. Another
alternative considered was doing substitutes to every
word sequentially to the initial sentence at that itera-
tion where the agent observed ”k” candidate words and
selected one word and then at the end of the iteration
e-greedily choose the swap that would have made the
best change, make it to the sentence and do another
pass through. This would have led to many more steps
overall since given a sentence with n words, we'd need
to do 10 steps in order to make one change, but it would

also make more use of the a context by which the agent
could learn as well.

� In addition to exploring deeper architectures and hy-
per parameters viaspinup , another improvement that
would be interesting is to explore how our agent could
learn how to select substitution words and update its
value function in a multi-tiered way (ie, selection ac-
tion, select word ). For now the environment does this
second task for the user for simplicity.

� Due to episode times being long ( partially due to
overlong allowance for episode lengths), we weren't
able to explore the utility of SAC and TD3, but those
would be obvious next choices once some of the issues
above are more evaluated and should lead to better
stability and exploration.

� More analysis of ”Word Length” distance and trajec-
tory ”POS” and word substitutions would be useful
particularly from an interpretability aspect to explain
global behavior better
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5. APPENDIX
5.1. Examples of Counterfactual Text Data Set and Incorrect Predictions

5.2. Examples of Generated Counterfactual Texts via REINFORCE and REINFORCE with baseline along with
the original input and human made counterfactual




