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Explainable Al for Sequential Data

For image, text and time series data
tasks, deep learning neural nets have
become the default modeling choice.
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e Who are we explaining to:

End user? Expert/Researcher?
Model developers? Other Models?
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e Who are we explaining to:

End user? Expert/Researcher?
Model developers? Other Models?

e White Box vs Black Box:

Do we have access to the model internals?
The data it was trained on?
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e Explaining from what point in model process:
Pre-model, In-Process or Post Hoc
Secondary g(f(x))

f(z)

data ->

Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead ( Rudin, et al, 2019 Nature)


https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x
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e Explaining from what point in model process:
Pre-model, In-Process or Post Hoc
Secondary g(f(x))

f(z)

data ->

Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead ( Rudin, et al, 2019 Nature)

e Global model vs Individual instance based explanations


https://www.nature.com/articles/s42256-019-0048-x
https://www.nature.com/articles/s42256-019-0048-x

@ TEXAS Types of Explainable Al XAl types
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Post Hoc explanations

Train a secondary model to explain a primary model of interest

Examples
Feature Attribution: (IG, SHAP, etc ) pixels/words that lead to model decision

Influential examples: which training data most influenced a model’s output
BERT probing: assess how well a LM encodes properties of language



https://arxiv.org/abs/1703.01365
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
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The University of Texas at Au:

Post Hoc explanations

Train a secondary model to explain a primary model of interest

Examples
Feature Attribution: (IG, SHAP, etc ) pixels/words that lead to model decision

Influential examples: which training data most influenced a model’s output
BERT probing: assess how well a LM encodes properties of language

Issues with Post Hoc secondary model explainers

- Feature Importance independent of task
- Do local or linear approximations give faithful explanations
of a primary, possibly very non-linear model ?

Explaining a network’s behavior in a way that it wasn't expressly trained for can
be problematic & makes assumptions that often do not hold (Chen, Rudin 20)


https://arxiv.org/abs/1703.01365
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
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In-Process methods are designed with explainability in mind

Examples

Prototypes: learn “prototypical’ representations

Deep k-NN models: utilize layer representations as additional “clustering” features
Concept based Models: |ayer specific additional task loss with supervision
Retrieval as Explanation: for tasks involving entity retrieval as an intermediate step

|”

Require access and modifications to the underlying model ....
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In-Process methods are designed with explainability in mind

Examples

Prototypes: learn “prototypical’ representations

Deep k-NN models: utilize layer representations as additional “clustering” features
Concept based Models: |ayer specific additional task loss with supervision
Retrieval as Explanation: for tasks involving entity retrieval as an intermediate step

|”

Require access and modifications to the underlying model ....
which is fine for critical applications!
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In-process explainable models for Sequential Data
- are an Useful & Under-explored area for sequential data modeling
- provide Interpretable and Faithful explanations of model decisions

- allow for model “diagnosis” and intervention at inference time.



;[‘EXAS O b_] ectives Challenges / Motivations

In-process explainable models for Sequential Data
- are an Useful & Under-explored area for sequential data modeling
- provide Interpretable and Faithful explanations of model decisions
- allow for model “diagnosis” and intervention at inference time.
Entity Representation learning allows for an additional interesting
and underexplored explainability aspect that grounds models.

Scalability is vital to the adoption of models in practice
Both play a central role in this work.
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Completed Work

Pre-Proposal Works

e |earning Dense Representations for Entity Retrieval. (CoNLL 2019)

e Deep Classification of Time-Series Data with Learned Prototype Explanations.
(ICML time series workshop 2019 joint work with Alan Gee)

e Biomedical Interpretable Entity Representations. (ACL-IJCNLP 2021)

Post Proposal Works

e Improving and Diagnosing Knowledge-Based Visual Question Answering
via Entity Enhanced Knowledge Injection
(WWW 22. Multimodal Understanding for the Web and Social Media workshop)

e Intermediate Entity-based Sparse Interpretable Representation Learning.
under submission
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Completed work

Completed Work ( Pre-Proposal )

Learning Dense
Representations for Entity
Retrieval. (CoNLL 2019)

Constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval
with an in-process, iterative hard negatives procedure

for model learning and inference time inspection.

Deep Classification of
Time-Series Data with
Learned Prototype
Explanations. (ICML 19)

Adapted a prototypical autoencoder classifier to be
compatible with time series data and allow for

tunable prototype diversity leading to improved accuracy
and global and instance level explanations.

Biomedical Interpretable
Entity Representations.
(ACL-1JCNLP 2021)

Learned a distantly supervised entity type system and data
set for use in training a Biomedical Interpretable Entity
model whose representations exist in a semantically
meaningful vector space & whose predictions may be
interpreted and diagnosed with an oracle method.
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Completed work

Completed Work ( Pre-Proposal )

Learning Dense
Representations for Entity
Retrieval. (CoNLL 2019)

Constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval
with an in-process, iterative hard negatives procedure

for model learning and inference time inspection.

Biomedical Interpretable
Entity Representations.
(ACL-1JCNLP 2021)

Learned a distantly supervised entity type system and data
set for use in training a Biomedical Interpretable Entity
model whose representations exist in a semantically
meaningful vector space & whose predictions may be
interpreted and diagnosed with an oracle method.
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Learning
Dense Representations
for Entity Retrieval

Gillick, D., Kulkarni, S., Lansing, L., Presta, A., Baldridge, J., le, Eugene., Garcia-Olano, D.
“Learning Dense Representations for Entity Retrieval”. Proceedings of the 23rd Conference on
Computational Natural Language Learning (CoNLL), Hong Kong, China, 2019.
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Example Query: George Harrison's
Beatles Guitarist Former Senior VP of Marketing
Highest Popular Prior at Nintendo of America.

Wiki Entity IDs Q2643 Q5540278
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Figure 1: Architecture of the dual encoder model for retrieval (a). Common component architectures are shown
for (b) text input, (¢) sparse ID input, and (d) compound input joining multiple encoder outputs. Note that all text

encoders share a common set of embeddings.
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During each iteration of training,

we identify entities which our model

assigns a higher ranking than the true entity
associated with a given mention and context.

These hard negatives

can be inspected over time during training
or inference to assess the mention/contexts
and entities that are added which are difficult
for the model to learn ( esp. later iterations)

This interpretable in-process information
about the learning process could be used to:

- improve error analysis,

100%

Recall@]

60%

40%

0 1 2 3 4 5

iteration

- identify cases where additional supervision could be useful
- gauge confidence in inference time predictions



@ TEXAS Summary of Contributions Completed Work 1

The University of Texas at Au:

Proposed first neurally learned, robust & efficient approach to Entity Resolution

Define a novel dual encoder architecture for
learning entity and mention embeddings suitable for retrieval

Describe a fully unsupervised, hard-negative mining algorithm
that greatly improves retrieval performance and
can be used to track and explain model learning.

Approximate nearest neighbor search yields quality candidate entities efficiently.

Outperform discrete retrieval baselines ( alias table, BM25 ) and
gives results competitive with the best reported accuracy on TACKBP-2010.
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Biomedical Interpretable
Entity Representations

Garcia-Olano, D., Onoe, VY., Baldini, I., Ghosh, J., Wallace, B., Varshe%/ K. “Biomedical Interpretable Entity
Representations”. Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021)
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Entities over text = typically embedded in dense vector spaces
with pre-trained language models (BERT,etc ).

[0.519, ©.917, -0.935, 0.891, 0.396, 0.711, 0.479, 0.417, 0.744, -0.254,
-0.174, 0.233, -0.315, 0.497, -0.516, 0.22, -0.679, 0.389, -0.683, 0.909,
23, 0.528, 0.116, 0.334, 0.717, 0.857, -0.262, 0.624, -0.178, -0.045, -0.
-0.952, 0.4, 0.356, 0.091, 0.976, -0.337, -0.002, 0.054, 0.512, -0.312,

.278, -0.409, -0.655, -0.294, -0.453, 0.735, 0.461, 0.282, -0.43, -0.838,
3, -0.736, -0.001, 0.889, -0.228, 0.645, 0.883, 0.8051]

[0.656, 0.407, 0.568, -0.035, -0.842, -0.257, 0.202, -0.31, 0.886, 0.386,
34, -0.823, -0.929, -0.068, -0.238, 0.236, -0.463, 0.56, -0.687, -0.521,
88, 0.54, 0.047, -0.434, -0.009, 0.59, 0.971, 0.798, 0.202, 0.225, 0.131,
88, 0.44, -0.835, -0.032, -0.935, 0.318, 0.72, -0.23, -0.903, 0.912, -0.8
0.981, -0.23, 0.797, -0.785, -0.583, 0.055, -0.511, 0.413, -0.757, 0.914,
943, 0.62, -0.78, 0.888, 0.288, 0.807, -0.207, -0.284]
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Entities over text = typically embedded in dense vector spaces
with pre-trained language models (BERT,etc ).

[>>> word_embedding_for_happy

[0.519, 0.917, -0.935, 0.891, 0.396, 0.711, 0.479, 0.417, 0.744, -0.254,
-0.174, 0.233, -0.315, 0.497, -0.516, 0.22, -0.679, 0.389, -0.683, 0.909, &«
23, 0.528, 0.116, 0.334, 0.717, 0.857, -0.262, 0.624, -0.178, -0.045, -0.
-0.952, 0.4, 0.356, 0.091, 0.976, -0.337, -0.002, 0.054, 0.512, -0.312,

.278, —-0.409, -0.655, -0.294, -0.453, 0.735, 0.461, 0.282, -0.43, -0.838,

3, -0.736, -0.001, 0.889, -0.228, 0.645, 0.883, 0.805]

[>>> word_embedding_for_sad ‘
[0.656, 0.407, 0.568, -0.035, -0.842, -0.257, 0.202, -0.31, 0.886, 0.386,
34, -0.823, -0.929, -0.068, -0.238, 0.236, -0.463, 0.56, -0.687, -0.521,
88, 0.54, 0.047, -0.434, -0.009, 0.59, 0.971, 0.798, 0.202, 0.225, 0.131,
88, 0.44, -0.835, -0.032, -0.935, 0.318, 0.72, -0.23, -0.903, 0.912, -0.8
0.981, -0.23, 0.797, -0.785, -0.583, 0.055, -0.511, 0.413, -0.757, 0.914,
943, 0.62, -0.78, 0.888, 0.288, 0.807, —-0.207, -0.284]

Not immediately interpretable.

Dense Entity = Give good performance for entity-related tasks,
Embeddings but using them in those tasks

requires additional processing in neural models.
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rsity of Texa

Onoe et al* learn human readable interpretable entity representations
that achieve high performance without additional learning (“out of the box”)
fine grained entity types

}
. living people
Embedding Model Entity © @
(Section 3) Embedding m sportspeople
tennis
e ' m american
:mer_ica{l male
Larry Fine O'Brien served for the o b
m people
match in the third set before Context m place
Washington came charging back. [ cities
Mention o

represent probability of entity have corresponding properties

experiments using Ultra Fine Entity Type system (10k)
and Wikipedia Categories Type System (60k)
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Problem setup: Interpretable Entity Representations

s = a sequence of context words,
m = an entity mention spanins.

t e [0, 1] T binary vector of entity types over typesin T

Goal: Learn parameters 6 of a function f that
maps the mention m and its context s
= to a vector t
that captures salient features of the entity mention in its context

High dimensional Multi-label classification task over entity types
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Can we adapt |IERs for the Biomedical Domain?

*[ Glesatinib [* is a dual inhibitor of c-Met and SMO
that is under phase Il clinical trial for non-small cell lung cancer.

world health organization essential medicines : 0.4941
pyridines : 0.4073
diols : 0.3539
cancer treatments : 0.3260
carboxylate esters : 0.2376
chloroarenes : 0.1984
rtt : 0.1879 \
hormonal antineoplastic drugs : 0.1768 .
MOSt proba ble antineoplastic drugs : 0.1037 Of 60k W|k|
. alcohols : 0.0771 .
en‘uty types for prodrugs : 0.0315 eﬂtlty typeS
. _> peptides : 0.0300
menUon/Context methyl esters : 0.0223
merck : 0.0191

.0135
.0130
.0124
.0103
.0099
.0090
.0089
.0073
.0066
.0066
.0058
.0057

transgender and medicine :
teratogens :

world anti-doping agency prohibited substances :
peripherally selective drugs :
human proteins :

ureas :

withdrawn drugs :

iarc group 2a carcinogens :
prostate cancer :

mechanisms :

chemotherapy :

aromatase inhibitors :

IO 0O 0 0000000000000 O0OO0ODO0ODO0OO0OO0OOOO



PubMed
Abstracts

( 460K ) TAGCER & TRAINING DATA
CONSTRUCTION
Glesatinib ,ac-MET/SMO | Dual
Ca33004a Ci1564184
CHEMICALS & DRUGS,PHARMACOLOGIC SUBSTANCE CHEMICALS & DRUGS
Inhibitor Antagonizes P- | glycoprotein
Cl448104 co591232 co072622
CHEMICALS & DRUC S CHEMICALS & DRUGS CHEMICALS & DRUGS
Mediated Multidrug | Resistance | in | Cancer Cells
co127a07 c0237834 C1306459 coo07584
FUNCTIONAL CINCEPT NEOPLASTIC PROCESS NEOPLASTIC PROCESS

CUID to Glesatinib

DBPedia
UMLS — From Wikipedia, the free encyclopedia
CUIDs /' mapper '
( Concept Unique Glesatinib (MGCD265) is an

\dentifiers ~a SLING / experimental anti-cancer drug.!"’
Categories: Drugs not assigned an ATC code

| Tyrosine kinase inhibitors | Acetamides = Thiourea
| Fluoroarenes | Experimental cancer drugs

37 million triples of the form | Antineopiastic and immunomodulating drug shubs
( mention, context, [types] ) 68K unique entity types total

BIOMEDICAL
Completed Work 3
woze | enmiry Tvoe Svaren B

Distant Supervision
to construct

Entity Type System
and Training Data.
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Interpretable
Sparse Entity INEEEEEEEEEEEE

Representation T
Embedding é element wise
MOdeI I sigmoid

EEEEEEEEEEEEEE
A A A A AAAAAAAAAADN
| EEEEEEEEEEER
| HE
dense i _@ >l ] 68k Type
P = Embeddmgs
| IIIIIIIIIIII
T ...... 68,304
Mention and Context
Encoder (PubMedBERT)

[CLS] mention [SEP] context [SEP]
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Interpretable
Sparse Entity INEEEEEEEEEEEE

Representation T
Embedding é element wise
MOdeI I sigmoid

ENEEEEEEEEEEER
A A A A AAAAAAAAAADN
| EEEEEEEEEEER
| [ ] |
dense i _@ >. | 68k Type
rep = Embeddmgs
] IIIIIIIIIIII
T ...... 68,304

Mention and Context
Encoder (PubMedBERT)

[CLS] mention [SEP] context [SEP]

Training loss:
Independent sum
of binary cross entropy losses
over all all entity types T
over all training examples D.

—ZZ% log(tij) + (1 —t;;) - log(1 — ti5),

where t Is the true label value (O or 1)
for data instance i's jth component

Inference via distance metric (cosine sim, dot prod)
between Biomedical IERs
without fine-tuning
(leverages quantized based
efficient similarity search)
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(1) Named Entity Disambiguation (2) Entity label Classification
(NED) on Clinical Entities. for Cancer Genetics
Tost hop Test Acc.
Model Dot Prod Cosine Sim L T Dot Frod
Model Dense Sparse Dens ars
BIER-PubMedBERT (ours) 80.1 84.0 o Sl (Spaks’ Deny:  Spank
BIER-SciBERT (ours) 76.4 77.3 BIER-PubMedBERT 85.5 86.8 88.2 875
BIER-BioBERT (ours) 71.9 75.9 BIER-SciBERT 708 770 728 768
BIER-BioBERT 834 859 856 868
Onoe and Durrett (2020) 63.6 69.8 ©
Popular Prior 73.9 ) Onoe and Durrett (2020) 63.9 55.1 60.0 599 o
a9 - ) PubMedBERT 77.3 - 69.3 -
PubMedBERT (Gu et al., 2020)  77.6 o L A :

SciBERT (Beltagy et al., 2019) 77.4 -

BioBERT (Lee et al., 2019) 77.9 : BioBERT 676 - 596 -

Table 3: Test accuracy on Cancer Genetics data using
a nearest neighbor classifier (k=1) without fine-tuning
based on sparse output or intermediate dense embed-
dings using L2 or Dot Product distance metrics.

Table 2: BIER zero shot test results vs Logistic Regres-
sion Baselines trained on task data for NED task
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(2)

Entity label Classification for Cancer Genetics

Accuracy as a function of training data samples per class used
1.0

o
)

accuracy
o
(=]

@~ BIER-PMB dense NN

X
\

=y ' o ~t= BIER-PMB sparse NN
e . iy «s . PubMedBERT NN
0.2 -4 PubMedBERT finetune
5 10 25 50 75 100 200

samples per class

Figure 3: Results for the entity label classification task
under varying amounts of supervision.

Completed Work 3




Summary of Contributions Completed Work 2

Developed a Biomedical Interpretable Entity Representations (BIERs) model
Using training data ( 37 million )& a 68K biomed entity type system

obtained via a novel distant supervision method linking PubMed to Wikipedia
Empirically BIERs outperforms the prior IERs work on various biomedical tasks

Showed BIERs outperforms Dense non-interpretable models
when the supervision available is limited ( 75 samples per class)

Propose an oracle technique using both the dense and sparse embeddings from
a BIER model to improve task performance and motivate the use of confidence
measures for discovering when to inspect test cases.



Completed work

Completed Works - Post Proposal

Post Proposal Works

e Intermediate Entity-based Sparse Interpretable Representation Learning.
under submission

e Improving and Diagnosing Knowledge-Based Visual Question Answering
via Entity Enhanced Knowledge Injection
(WWW 22. Multimodal Understanding for the Web and Social Media workshop))
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Intermediate Entity-based
Sparse Interpretable
Representation Learning

Garcia-Olano, D., Onoe, Y., Wallace, B., Ghosh, J.,, “Intermediate Entity-based Sparse Interpretable
Representation Learning”. Under Submission
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Interpretable
Sparse Entity INENENEEEEEREN

Representation T
Embedding é element wise prOS
MOdel sigmoid .
I e |nduce sparse embeddings that are human-readable,
EENEEREREREERE . . . . .
SaAaaahadaanas whose dimensions correspond to fine-grained entity

types & values are predicted probabilities that a given
entity type component aligns with an entity/context

e Perform well in zero-shot & low supervision settings.

Mention and Context
Encoder (PubMedBERT)

e Compared with standard dense embeddings, these
T T interpretable representations permit unique,
[CLS] mention [SEP] context [SEP] fine-grained model analysis & debugging
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Interpretable
Sparse Entity INENENEEEEEREN

Representation T
Em bedding é element wise
MOdel I sigmoid
EENEERERAEEERE

A A A AAAMAAAMALAALAALD

Mention and Context
Encoder (PubMedBERT)

[CLS] mention [SEP] context [SEP]

Recall IERs/BIERS

Pros ( prior slide)
Sparse human readable entity type embeddings

(

e Perform well in zero-shot & low supervision settings.

e Unique, fine-grained model analysis & debugging
Cons

e Lower accuracy on tasks with lots of training data

e Fine-tuning these representations improves accuracy

on downstream tasks, but destroys the semantics of
the dimensions as enforced in pre-training
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Interpretable
Sparse Entity INEENEEEEEEEEN
Representation

Embedding | 5 A
Model ? sigmoid

i
— DEDEED

3
Mention and Context
Encoder (PubMedBERT)

() () =) () A

1

$ i t 1

[CLS] mention [SEP] context [SEP]

Pros ( prior slide)

e Sparse human readable entity type embeddings

e Perform well in zero-shot & low supervision settings.
e Unique, fine-grained model analysis & debugging

Cons

e Lower accuracy on tasks with lots of training data

e Fine-tuning improves accuracy on downstream tasks,
but destroys the semantics of the dimensions

Motivating Question:
Can we maintain the interpretable semantics afforded by (B)IERs
while improving predictive performance on downstream tasks?
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Intermediate enTity-based sparse Interpretable Representation Learning

ItSIRL MOdeI Intermediate entity-based
- Interpretable Layer
/’_/\ > .
» B
EEEEEEEN’H =
dense. @_’ Entity Type |« = > [ Decoder J, O
e Embeddings|g m el =
I I EEEEEN, 5 |
...... # Types » i Y i—

et

@—»ll

Mention and Context L = Lrecon + ALet

Encoder (BERT)

Loss = Dense Reconstruction loss
+ Entity Typing loss

L1 1 ]

[CLS] mention [SEP] context [SEP]
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ItsIRL Model

encoder

/f_&,.

Intermediate entity-based
Interpretable Layer

|
L (TTTTTTT b =
dense @l _ Entity Type : = > » B

| EEENENEEN, 5 [ |

T 1 20 o # Types » i t Lorecon
We pre-train a encoder/decoder @
with a sparse and interpretable, Mention and Context L = Lrecon + ALet
high dimensional latent space and Encoder (BERT) Loss = Dense Reconstruction loss

. i g -
rich dense output representations. Rty Typing)loss

L1 1]

[CLS] mention [SEP] context [SEP]

The encoder induces a sparse embedding
of entity types as in prior work on |IERS,

but now for downstream tasks we can freeze the encoder
(which yields interpretable entity representations) & fine-tune the decoder.
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Empirically over two biomedical tasks
we show our model gives both

- interpretable entity types and

- improved task performance.

We propose two nhovel methods to study the model's:

e interpretability via class-based global prototypes over entity types
e debugging ability via automated entity type manipulation
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Cancer Genetics Classification [Pyysalo et al., 2013]
Data: ~11K training, 3.5k dev, & 7k test examples from PubMed articles
Task: Given a title/abstract & entity mention, classify the entity as one of 16 classes

Model Q  Test Acc
BIER-PMB* v’ 87.5
ItsIRL v’ 91.9
ItsIRL E2E* - 95.7
PubMedBERT - 96.1

Table 1: Cancer Genetics results
Q = interpretable types

PMB* = PubMedBERT
E2E* = End-To-End fine-tuned
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‘The University of Texas at Austin

Cancer Genetics Classification [Pyysalo et al., 2013]
Data: ~11K training, 3.5k dev, & 7k test examples from PubMed articles
Task: Given a title/abstract & entity mention, classify the entity as one of 16 classes

Model Q  Test Acc

BIER-PMB* v 875

TtsIRL v 919

ItsIRL E2E* - 95.7

PubMedBERT - 96.1

Ablations Test Acc

ItsIRL - random init 88.9 <- importance of pre-training decoder

ItsIRL - 1 layer decoder 68.1 <- importance of size & pre-training of decoder
Table 1: Cancer Genetics results *varying layer depths for our decoder (3, 5, 8)

— i 1 . )<
Q = interpretable types gives similar performance across.



TEX%§ |tS| R |_ - Tas k 2 Completed Work 5
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BIOSSES - Sentence Similarity Estimation System for the Biomedical Domain
Data: 64 train, 16 dev & 20 test cases ( pairs of PubMed sentences)
Task: Predict similarity score (regression) between two sentences

Model Q MSE
BIER-PMB* v~ 5.05
ItsIRL v~ 1.59
ItsIRL E2E* - 1.15
PubMedBERT - 1.14

Table 2: BIOSSES sentence similarity

regression results.
Q = interpretable types

PMB* = PubMedBERT
E2E* = End-To-End fine-tuned
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‘The University of Texas at Au:

BIOSSES - Sentence Similarity Estimation System for the Biomedical Domain
Data: 64 train, 16 dev & 20 test cases ( pairs of PubMed sentences)
Task: Predict similarity score (regression) between two sentences

Type Sparsity

Sparsity of Entity Type Layer

Model 9 MSE Q0L Qd @25 5 varying weight thresholds
BIER-PMB* v’ 5.05 - - .

ItsIRL v/ 159 336 81 44 ¢ Sparsity of Interpretable layer
ItsIRL E2E* - 115 5723 780 330  « Sparsity of Un-interpretable layer
PubMedBERT - 1.14 - - ,

Table 2: BIOSSES sentence similarity

regression results.
Q = interpretable types

PMB* = PubMedBERT
E2E* = End-To-End fine-tuned
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Positive class prototypes
1)  Run the decoder fine-tuned model over the task training data.
2) Gather all correctly predicted instances for each class,
sum their interpretable entity type layer representations & normalize them

vec—min(vec)
max(vec) —min(vec)

Positive class prototype =

vec is the sum of entity type layers for a given class.
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‘The University of Texas at Austin

Positive class prototypes
1)  Run the decoder fine-tuned model over the task training data.
2) Gather all correctly predicted instances for each class,
sum their interpretable entity type layer representations & normalize them

vec—min(vec)
max(vec) —min(vec)

Positive class prototype =

3 Cellular component
vec is the sum of entity type layers for a given class.
., Amino acid

Organ

. Multi-tissue structure
11 Tissue

developing anatomical structure
&ene or gene prodyct .
natomical system

o
i

Cell Simple chemical ~ dmmaterial anatomical @
iti . Organism substance Organjsm
.P031t1ve. Class Prototypes o g Organjsm._
in 2D via PacMap Cancer
—24
LOrganism

-3

Pathological formation

=3 0 1 2
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‘The University of Texas at Austin

Gene or Cell Cancer Simple Organism Multi-tissue Tissue
gene product chemical structure
1  protein cell disease ingredient taxonomy blood tissue
2 ingredient elementary  neoplasm acid mammals angiology cell
particle in 1758
3  human human cells oncology rtt humans soft tissue human body
4  gene battery tissue who essential tool-using nephron connective
medicines mammals tissue
5 coagulation  gene abnormality chemical anatomically blood endocrine
compound modern humans vessel system
6 cel protein cancer measurement postmodernism human body  epithelium
7  cell growth pancreas syndrome calcium patient lymphatic sys angiology
8 endothelium system malignancy hydroxyl medical term. lymphoid org. blood vessel
9  homology carboxylic  cell glucose prothrombin mononuclear  histology
acid growth time phagocyte sys
10 oncogene ester paraneoplastic methyl group bbc gland barcode ©
syndromes

Table 3: Top Entity Types for 7 most frequent positive Prototype class embeddings
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‘The University of Texas at Austin

class prototypes

Entity
type weight

Entity
type index

Gene or Cell Cancer Simple Organism Multi-tissue  Tissue
gene product chemical structure
protein cell disease ingredient taxonomy blood tissue
(1.0, 5) (biology) (1.0, 2) (1.0, 1) (biology) (1.0, 47) (biology)
(1.0, 3) (1.0, 45) (1.0, 34)
ingredient elementary  neoplasm acid mammals angiology O cell
(0.742, 1) particle (0.897, 8) (0.304, 18) described (0.843, 857)  (biology)
(0.346, 314) in 1758 (0.878, 3)
(0.943,169)
human human cells oncology rtt humans soft tissue O  human
(0.729, 7) (0.201, 145) (0.684, 28) (0.301, 4) (0.943, 187)  (0.792, 3067) body
(0.814, 30)
gene battery tissue world health  tool-using nephron O  connective
(0.679, 6) (electricity) (biology) organization = mammals (0.761, 1951) tissue ©
(0.192, 485) (0.646, 34) essential (0.943, 186) (0.385, 937)
medicines
(0.269, 25)
coagulation gene abnormality chemical anatomically blood endocrine
(0.361, 37) (0.184, 6) (behavior) compound modern vessel system
(0.604, 56) (0.206, 14) humans (0.682, 327)  (0.345, 482)
(0.943,188)
cell protein cancer measurement post- human epithelium
(biology) (0.177, 5) (0.582, 9) (0.19, 12) modernism  body (0.325, 144)
(0.353, 3) (0.943, 177)  (0.538, 30)
Flscore - 96.29 90.71 92.73 90.24 94.10 81.65 74.94
Support - 2520 1054 925 727 543 303 190
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ItsIRL - Global Prototypes

Completed Work 5

Negative prototypes

Gather all incorrectly predicted instances,
group by true vs predicted class,

sum entity type layers
& normalize

Truth Cell Chemical Cell Organism Tissue Gene Cancer
Pred  Cancer Gene Gene Gene Multi-tissue Chemical Cell
1 cancer ingredient gene gene histology ingredient cell
(1.0, 9) (1.0, 1) (1.0, 6) (1.0, 6) (1.0, 391) (1.0, 1) (biology)
(1.0, 3)
2 disease protein protein protein blood acid neoplasm
(0.87, 2) (0.61, 5) (0.65, 5) (0.93, 5) (0.96, 47) (0.58, 18) (0.41, 8)
3 neoplasm receptor human human blood chemical disease
(0.73, 8) (biochemistry) (0.50, 7) (0.65, 7) vessel compound (0.38, 2)
(0.53, 52) (0.96, 327)  (0.53, 14)
4 malignancy gene allele allele angiology derivative t
(0.66, 20) (0.49, 6) (0.34, 71) (0.43, 71) (0.92, 857)  (chemistry) cell
(0.42, 58) (0.36, 429)
5 rtt human ingredient apoptosis nephron protein lymphocyte
(0.55, 4) (041, 7) (0.28, 1) (0.37, 87) (0.74, 1951) (0.34, 5) (0.35, 112)
6 oncology enzyme receptor wild circulatory  purine cancer
(0.46, 28)  (0.34, 29) (biochemistry) type system (0.32, 781) (0.25, 9)
(0.25, 52) (0.35, 159)  (0.64, 664)
7 squamous-  blood transcription ingredient tongue deciduous lymphoblast
cell (0.29, 47) factors (0.34, 1) (0.58, 158)  teeth (0.25, 1200)
carcinoma (0.25, 219) (0.28, 3292)

Entity Types for 7 most frequent negative Prototypes
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The University of Texas at Au:

Entity Type manipulation study

1. Generate coarse sets of entity types for each class based on string matching

Class Term Rules Inclusion/Exclusion Terms in Set
Cell [cell] 357
Cancer [cancer, neoplasm)] 155

[ gene’, 'gene ’, ’ genes’, 'genes ']
2 ) s 9 ) ) ) 434

not in ['generation’; 'general’]

Simple chemical [ chemical, chemical ] 80

[’ organ’; ’organ ’, ’organism’| 179

not in [organization’]

Gene or gene product

Organism

Table 6: Terms used to create coarse Class specific Entity Type sets
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Entity Type manipulation study
1. Generate coarse sets of entity types for each class based on string matching
2. 3 strategies for manipulating entity types at inference time

- “Fixing” incorrect entity types
reduce weights of types from incorrectly predicted class's coarse type set

- “Promoting” true entity types
increase weights of entity types associated with the true label’s type set

- Both “Fixing” incorrect types And “Promoting” true types
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‘The University of Texas at Au:

Entity Type manipulation study
1. Generate coarse sets of entity types for each class based on string matching
2. 3 strategies for manipulating entity types at inference time

- “Fixing” incorrect entity types
reduce weights of types from incorrectly predicted class's coarse type set

- “Promoting” true entity types
increase weights of entity types associated with the true label’s type set

- Both “Fixing” incorrect types And “Promoting” true types
3. For each test error case, feed them through our model and

run each of the 3 strategies on the corresponding entity type weights in the
intermediate entity types layer & observe final class probabilities.
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The University of Texas at

B |ogits * (original prediction)
e fix logits

BN promote logits

B both logits

Example on
Single Error Case

True Label: Cancer ~ i o
Predicted: Cell C-’l i ¥ b 2 2 v L
Gene ]
_—— |
Cell

Cancer-

Chemical -

Organism-
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The University of Texas at

B |ogits ™ (original prediction)
e fix logits
B promote logits

True Label: Cancer . bethiloglts .

Predicted: Cell < 4 i & 9 S

Example on
Single Error Case

4\
- VT

Gene
Results after

Manipulation
Techniques Cell
1. Fixing ->Gene /

2. Promote -> Cell

3. Both -> Cancer— Cancer

Chemical

Organism
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Results:
Model Test Accuracy
ItsIRL 91.48
+ Fix types 93.91
+ Promote types 95.74
+ Both fix & promote 95.68
+ Best of 3 approach 96.78
PubMed BERT* 96.10

Table 4: Entity type manipulation re-
sults using Class Coarse sets to
approximate non-expert
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‘The University of Texas at Austin

Intermediate enTity-based Sparse Interpretable Representation Learning
(ItsIRL) an extension to the IERs architecture provides an intermediate
interpretable layer and decoder that can be fine-tuned for improved
performance on downstream tasks.

ItsIRL outperforms prior IER methods and is competitive with
uninterpretable dense language models on two biomedical tasks.

Propose entity type manipulation analysis which facilitates
model understanding and debugging in an automated fashion with even
minimal, noisy supervision.

Show how combining entity types over classes on the training set to create
positive and negative class prototypes can be used to reveal task specific
global structure and semantics learned by our model.
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‘The University of Texas at Austin

Improving and Diagnosing
Knowledge-Based

Visual Question Answering
via Entity Enhanced
Knowledge Injection

Garcia-Olano, D., Onoe, Y., Ghosh, J., “Improving and Diagnosing Knowledge-Based Visual Question
Answering via Entity Enhanced Knowledge Injection”. Proceedings of WWW 22 conference.
Workshop on Multimodal Understanding for the Web and Social Media.



W TEXAS Knowledge Based VQA

Question: How many of them
were born in the USA?

Image Caption: Barack Obama
and his wife Michelle at the Civil
Rights Summit at the LBJ
Presidential Library, 2014.

Wikipedia Entities:
Barack_Obama Michelle_Obama

Question

Caption

S S S MUS ——— |

| I
| |

I
| + Image |
| I
| I
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e VQA models are expensive to pre-train ( many image, question pairs)
Can we improve upon their performance during fine-tuning?
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e Quite a bit of work studying if LMs can be used as knowledge bases
But less on whether vision-language models can be?
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VQA models are expensive to pre-train ( many image, question pairs)
Can we improve upon their performance during fine-tuning?

Quite a bit of work studying if LMs can be used as knowledge bases
But less on whether vision-language models can be?

Poerner et al 2020 show improved performance on entity-centric text tasks

by using a simple, entity based, knowledge injection technique into LMs.
Would this injection technique work as well for VQA models?
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‘The University of Texas at Au:

VQA models are expensive to pre-train ( many image, question pairs)
Can we improve upon their performance during fine-tuning?

Quite a bit of work studying if LMs can be used as knowledge bases
But less on whether vision-language models can be?

Poerner et al 2020 show improved performance on entity-centric text tasks
by using a simple, entity based, knowledge injection technique into LMs.
Would this injection technique work as well for VQA models?

Research on interpretability methods for single modalities is abundant,
How would knowledge injection affect bi-modal explainability?
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E-BERT: Efficient-Yet-Effective Entity Embeddings for BERT( Poerner et al ACL 2020

Wikipedia2Vec (Yamada 2016)  Swikipedia : Lord U Lint — R¥Wikipedia
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E-BERT: Efficient-Yet-Effective Entity Embeddings for BERT( Poerner et al ACL 2020

Wikipedia2Vec (Yamada 2016)  Swikipedia : Lord U Lint — R¥Wikipedia

E-BERT aligns Wikipedia2Vec entity embeddings
to BERT’s wordpiece vector space
for entities found in task text inputs
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E-BERT: Efficient-Yet-Effective Entity Embeddings for BERT( Poerner et al ACL 2020

Wikipedia2Vec (Yamada 2016)  Swikipedia : Lord U Lint — R¥Wikipedia

E-BERT aligns Wikipedia2Vec entity embeddings
to BERT’s wordpiece vector space
for entities found in task text inputs

Learn map W during training

> [[Wéwikipedia(z) — EBERT(2)][3

z€LwpNLword
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Learn map W during training

Z ||W Ewikipedia () — EBERT(2)]]3

x€LwpNLword

o . ..in  the USA  ? Barack_Obama / Barack Obama and
At Inference map Wiki ents to BERT viaW 4 A @ =T ® A 1 A

RdBERT

EE-BERT : LEnt —
Ee-BERT (@) = W Wikipedia (@) oy

(linear transformation
fitted on intersection
before training)

-

-

Figure 1: Schematic depiction of E-BERT-concat.
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‘The University of Texas at Austin

LXMERT (Tanetal2019)

/"_//\

Question: How many of them
were born in the USA?

VISUAL OBJECT § Vision
Image Caption: Barack Obama ENCODER \ ‘—‘g g Output
and his wife Michelle at the Civil CROSS : of
Rights Summit at the LBJ MODALITY Cross-
Presidential Library, 2014. ENCODER | | @ Modality
I .. | Question | ; Output
Wikipedia Entities: | +Image | LANGUAGE / :
Barack_Obama Michelle_Obama i Caption i ENCODER b Language
—————————————— . Output

KNOWLEDGE INJECTED INPUT

E-BERT concat - ﬁ ﬁ ﬁ ﬁ ﬁ i ﬁ ﬁ i

..in the USA ? Barack_Obama / Barack Obama and

( Poerner et al 2020)

‘wordpiece vector space;
-

-~ (aligned entity vector space)
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KVQA ( Sanket Shah, et al. AAAI 19)

24K images with text captions of politicians, actors, athletes, etc

183K image/question QA pairs (~ 7 questions per image)

Metadata for the 18.8K unique Wikipedia entities

Rare entities ( only 65% exist in top million most occurring Wiki entities)

OKVQA ( Marino, et al. CVPR 19)

- 14k image/guestion pairs for commonsense reasoning tasks ( fewer entities )
- 10 human generated answers per questions while KVQA only has 1
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‘The University of Texas at Austin

Entity span construction

KVQA

OKVQA

1) Question only ( no spans )

2) Question + Image Caption ( no spans)
3) NERper - only entities of people

4) NERagro - all entities, no filtering

5) KVQAmeta - use metadata provided
( less noise, more precise, only partial cover )

1) Question only ( no spans)

2) 13K - no filtering to obtain entity spans for 13K
QA pairs (92.8% of questions)

3) 4K - semi-automated rules based technique to
identify poor candidate spans which filters the set to
4K (28.6% of questions).

4) 2.5K - manual filtering over unique entity spans
to filter it down to 2.5K (17.8% of questions).
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‘The University of Texas at Austin

Completed Work 4

Table 1: KVQA overall accuracy results over 5 splits and en-

tity spans per question (ents per Q), E-BERT representations P
injected per question (eberts per Q) and the percent of ques-

tions with E-BERT injections (Qs w/ eberts) for split 1

ents eberts Qs w/

Model Type Acc perQ perQ eberts
p”olz Shah 2019 _ 4950 - ] -
WOrk 4 Caption - 5020 - _ ] .
1. Question - 47.54 " - -
2.+ Caption - 05025 - - -
o
3. NERper noisy 50.69 2.5 2.3 94

4. NERagro noisy 50.77 3.3 3.2 .97 °

5. KVQAmeta noisy @ 52.83 14 14 .99

Using E-BERT with entity spans from
KVQAMeta gives 2.5 points higher accuracy.
These spans are the closest to “gold spans”
(quality over quantity) however there is still
plenty of room for improvement.

Multi-hop and multi-relationship questions
improve by 6 & 5 points respectively (Table 3)

The improvement for the lower quality
derived entity spans (NERper and NERagro)
still give .5 accuracy improvement.

In all cases, more context can be gathered via
retrieval mechanisms and E-BERT could be
used on top of those results.
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‘The University of Texas at Austin

Table 2: OKVQA model results over 5 runs. * denotes models
based on GPT-3 that are not directly comparable

Model Mesit Std Max Meilisi e Overall using E-BERT on LXMERT for OKVQA

OKVOQA best 2784 - i i has much less effect since the data has very
prior  Shevchenko [29] 39.04 - - - few, as a percentage, questions with entities
works Wu et al [39] 40.50 - . = and image captions (which are available

PICA-Base (best) [41] * 433 - - -
PICA-Full (best) [41] *  48.0 - - -

LXMERT Plain 4351 023 4387 4334 Add . . 13K h
+ EBERT 13K 4059 0.09 40.69 4059 ° ing noisy entity spans ( 13K ) hurts

+ EBERT 4K 43.67 0.13 43.88 43.66 performance
+ EBERT 2.5K 4361 0.36 44.10 4334

externally from COCO) were not used
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‘The University of Texas at Austin

Table 4: KVQA Bi-modal (BM) and Transformer attention
(TRF) explaination results for Questions where an E-BERT
injected entity is in top 5 most important tokens.

BM BM TRF TRF
Model Type ACC Qs Acc Qs

Average 59.74 8.59 58.33 10.35

e For 7 out of 9 entity span set variations ( NERper, NERagro, KVQAmeta ), the questions
which include E-BERT entities amongst their top 5 using BM-GAE provide better accuracy.

e This suggests that when using either method, an entity appearing in the top 5 most important
tokens for a question/caption correlates with higher model accuracy (59.74 vs 51.04%) *

* Agrees with perturbation test results in Hila Chefer et al ICCV 2021.
“Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers.”
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e \We analyzed how efficient, entity based knowledge injection via E-BERT
during fine tuning affects the performance of an existing model LXMERT on
the task of knowledge-based VQA in terms of accuracy & explainability.

e \We show substantial improved accuracy on the entity rich KVQA dataset,
2.5% top 1 acc, without the need to redo any costly pre-training.

e Model accuracy is never harmed by knowledge injection on KVQA, & only
once for OKVQA, when the entity span set quality is very low.

e Thiswork is complementary to state of the art retrieval based methods
that gather additional context to improve VQA task performance since our
method can be applied on top of those methods.
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Future work
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‘The University of Texas at Au:

For the ItsIRL work,

1) learning class entity type sets in a data driven way and
( as opposed to the coarse string matching way we did in the paper )

2) learning optimal error manipulation methods for model debugging
( which technique: promote, fix or both works best for which error cases )

3) a nearest neighbor confidence measure approach
for flagging test examples for inspection that takes
a test case’s entity type layer & matches it against
the entity type layers of positively predicted training examples
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‘The University of Texas at Austin

Application to Large Language Models ( GPT3, Dall-E2, Imagen, etc)

Work around prompting LLMs and using smale-scale manual labeling
to learn in-process critic models that filter & improve quality of generated texts.

- LLMs classifiers where high quality explanations
are generated in-process (Wiegreffe,, 2022)

- LLMs for automating knowledge base creation z —
INn commonsense reasoning (West, 2021). GPT-3 _
175B Parameters Symbolic Knowledge

General Model
e Extending to different domains & O CRITIC
use cases with in-process techniques A Fine-tuned RoBERTa
filters for quality *
e Multi-modal setting where a model f:ﬁgﬂc‘?x e
could generate images that explain Commonsense K6, 5= ==

the behavior of the model as a whole COMET4isti
1.5B Parameters - /
Commonsense Model@
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This dissertation argues in-process diagnostic techniques
are useful for sequential data tasks both in accuracy & interpretability.

1. We constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval with an

in-process, iterative hard-negatives procedure that can be inspected.

2. We adapted a prototypical autoencoder classifier to be compatible
with time series data; allowing for tunable prototype diversity
and improved global and instance level explanations. (not shown)

3. We learned a distantly supervised entity type system and data set for
use in training a Biomedical Interpretable Entity model whose
representations exist in a semantically meaningful vector space
& whose predictions may be diagnosed with an oracle method.



WHAT STARTS HERE CHANGES THE WORLD

4) Introduced the ItsIRL architecture that extends BIERs to allow for
task-centric fine tuning on pre-trained representations without breaking
the semantics of our learned entity type space.

We also proposed two explainable diagnostic methods, automated entity
type manipulation & entity type based class prototypes, for fine-grained
model debugging & global model semantics interpretability.

5) We analyzed how efficient, entity based knowledge injection via E-BERT
during fine tuning affects an existing VQA model LXMERT on the task of
knowledge-based VQA in terms of accuracy & bi-modal explainability.
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e Garcia-Olano, D., Onoe, Y., Wallace, B,, Ghosh, J.. “Intermediate Entity-based Sparse Interpretable
Representation Learning” under submission

e Garcia-Olano, D,, Onoe, Y., Ghosh, J,, “Improving and Diagnosing Knowledge-Based Visual
Question Answering via Entity Enhanced Knowledge Injection”. Proceedings of WWW 22
conference. Workshop on Multimodal Understanding for the Web and Social Media.

e Garcia-Olano, D., Onoe, Y., Baldini, |, Ghosh, J.,, Wallace, B, Varshey, K. “Biomedical Interpretable
Entity Representations”. Findings of the Association for Computational Linguistics (ACL-IJCNLP),
Bangkok, Thailand, 2021

e Gillick, D, Kulkarni, S, Lansing, L., Presta, A, Baldridge, J,, le, Eugene., Garcia-Olano, D. “Learning
Dense Representations for Entity Retrieval”. Proceedings of the 23rd Conference on
Computational Natural Language Learning (CoNLL), Hong Kong, China, 2019.

e Garcia-Olano, D,, Gee, A, Ghosh, J.,, Paydarfar, D. "Deep Classification of Time-Series Data with
Learned Prototype Explanations”. Proceedings of the 36th International Conference on Machine
Learning (ICML), Long Beach, California, PMLR 97, 2019

e Sankaran, K., Garcia-Olano, D., Javed, M., Alcala-Durand, M., De Unanue, A., van der Boor, P,
Potash, E., Avalos, R., Encinas, L., Ghani, R., “Applying Machine Learning Methods to Enhance the
Distribution of Social Services in Mexico”. Presented at UChicago Data Science for Social Good.
arXiv:1709.05551. 2017.

e Garcia-Olano, D. Arias, M, Larriba Pey, J. “Automated construction and analysis of political
networks via open government and media sources”. European Conference on Machine Learning
& Principles and Practice of Knowledge Discovery in Databases (ECML). Riva del Garda, Italy, 2016
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BACKUP SLIDES
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Prior State of the Art for Entity Resolution:
e Train on ( Mention, , Entity ) Triples.

2 Stages
(1) Retrieve Candidates

e Construct a Mention to Entities Lookup “Alias” Table.
9.8 Million unique mention strings
5.7 Million unique entities

(2) Re-Rank them

e Limitations
1) Low Recall
2) Context not considered. Can't predict unseen entities
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The University of Texas at Au:

The dual encoder learns a mention encoder @ and an entity encoder (,

where the score of a mention-entity pair (m, e) is:

s(m, e) = COS S|m( ¢(m), w(e) ) el e2 e3 e4 e5
m1
m2
m3
These pairs constitute only positive examples, ma
so we use in-batch random negatives (Henderson et al, 2017;): 5

We build the all-pairs similarity matrix for all mentions & entities in a batch.
& optimize a softmax loss on each row of the matrix.

We do this sampled softmax (Jozefowicz et al, 2016)
in place of a full softmax e e
e o2 )=
because the normalization term i ZK &%
Is intractable to compute over all 5.7M entities. =1

Zi
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For each training pair (Mi, €i) in a batch of B pairs, the loss is computed as:

B
L(mi, e;) = —f(mi, e;) +log Y exp(f(mi,e;))

=1
where f(m,,,, Bj) =a- S(m’i7 6j)
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Random negatives are not enough to train an accurate entity resolution model

So after learning an initial model using random negatives,
we propose to identify more challenging “hard negatives” via the following:

1. Encode all mentions and entities found in training pairs using current model.
2. For each mention, retrieve the most similar 10 entities (i.e., its nearest neighbors).
3. Select all entities ranked above the correct one as negative examples.
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The University of Texas at Au:

Random negatives are not enough to train an accurate entity resolution model

So after learning an initial model using random negatives,
we propose to identify more challenging “hard negatives” via the following:

1. Encode all mentions and entities found in training pairs using current model.
2. For each mention, retrieve the most similar 10 entities (i.e., its nearest neighbors).
3. Select all entities ranked above the correct one as negative examples.

We merge these new hard negative mention/entity pairs
with the original positive pairs to construct an additional task
& resume training the dual encoder using logistic loss on them.
For a pair (m, e) with labely € {0, 1}, the hard negative loss is defined as:

Lp(m,e;y) = —y-log f(m,e) — (1 —y)-log(l — f(m,e))
where f(m,e) = g(ay - s(m,e) + by)
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The University of Texas at Austin

The hard negative task is mixed with the original random negatives task

Lmulti = Lorig + Lhard

100%

System R@1 | Entities
AT-Prior 71.9 5.7M —
AT-Ext 13.3 5.7M
Chisholm and Hachey (2015) | 80.7 800K
He etal. (2013) 81.0 1.5M
Sun et al. (2015) 83.9 818K 60%
Yamada et al. (2016) 85.2 5.0M
Nie et al. (2018) 86.4 5.0M
Barrena et al. (2018) 87.3 523K 40%
DEER (this work) 87.0 | 5.7M g 1 2 : 4 :
Table 1: Comparison of relevant TACKBP-2010 results Figure 2: Recall@1 improvement for successive itera-
using Recall@ | (accuracy). While we cannot control tions of hard negative mining for Wikinews (solid) and
the candidate entity set sizes, we attempt to approximate TACKBP-2010 (dashed).

them here.
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The University of Texas

Inference is done by computing cosine similarity between
the test mention/context encoding and each of the cached entity encodings.

Approximate Search using quantization-based approaches (Guo et al. (2016) )
can be used to speed up retrieval greatly!

Mean Wikinews
Method search time (ms) R@100
Brute force 291.9 97.88
AH 22.6 97.22
AH+Tree 33 94.73

Table 3: Comparison of nearest-neighbor search meth-
ods using the DEER model. The benchmark was con-
ducted on a single machine. AH indicates quantization-
based asymmetric hashing; AH+Tree adds an initial tree
search to further reduce the search space.




TEXAS T-SNE visualization Completed Work 1

Inspecting Entity Encodings for Semantic Meaning
Finland vy
TUfkey ”Ekfalm My ASIA
EUROPE
India™ Japan Gem\any N AMERICA
Pakistan China Canada OCEANIA
Spaln S AMERICA
- Mexico United Kingdom
lrati Brazil United States
Israe
Egypt North Korea
Saudi Arabia New Zealand
Kuwait United Arab Emirates
Algeria Holland
Cape Verde
Sudan Cuéggu s El Salvador
Rwandamgeda Ecua%’or _
ANUOUA Figure 3.5: t-SNE visualization of our learned em-
Nicar beddings for select country Wikipedia page entities.
Liberia \?gnezuela More at diegoolano.com/deer/




Hard Negative In-Process Explanations Completed Work 1

At inference time, %
given a test mention/context, “n o, "I ——
=] = ] 2 .{
1) Get K nearest mention/contexts L me - , &
from training set af, o & %, - .
n - . E b
2) Collectively assess how each of :' 2 s ,'f . -
them performed over iterations E -
( gather the hard negatives along "y " o _:
with the true entities ) T - _ .
- ll. .‘
3) Get top entity prediction(s) e o 5
for the test mention/context e e n - 2
via cosine similarity ¥ e . ==
= "a
. "a . . " ges
4) Utilize 2 and 3 results to calculate iy e 2 ,
confidence measures for P - .
the final entity prediction S o Sk M
mE = -



TEXAAS Completed Work 2

The University of Texas at Au:

Explaining Deep Classification
of Time-Series Data
with Learned Prototypes

Garcia-Olano, D.*, Gee, A*, Ghosh, J., Paydarfar, D. “Deep Classification of Time-Series Data with Learned
Prototype Explanations”. International Conference on Machine Learning (ICML 2019 time series workshop)

*equal contribution
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Prototypes TITR T
. A ."ﬂo; .y .3' ARl
femiite 3, JPT ¢
" ”er '“}'Ji; .....'Q:..“
e - . & : ..

.ERp10: P8 MNIST

*Li et al. Deep learning for case-based reasoning through prototypes. (2017)
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Prototypes

" ﬁ 5 P13 SRR Y
P$., ..;:."" es s ’: ’: * e
. &;_

Py
A LR L
ﬂm MNIST
| totypes. (2017)
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prototype classliﬁer network h

prototype fully-connected  softmax
layer p layer w layer s

transformed

Prototype npu e i

Classifier f
Network sl
classifier
network
reconstructed S odis (he f)(x)
. input network
n data points (g° Hx) a

m prototypes
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prototype classliﬁer network h
1 prototype fully-connected  softmax

layer p layer w layer s
Prototype encoder 7L
Classifier fo
output of
Network ,,;Ji’o_t;pe
network
recopstructed S odis (h ‘:f )(x)
n data points e DS “e“;’“k
m prototypes
Feauro Vector - Prootypes  L((f,9,h), X) =E(h £, X) + Ar R(g© £, X)
b : it +/\1 Rl(pl,...,pm,X)

"f(x)_pi”% = Pi +A2 R2(p1a'"’pmaX)
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Predicting
Bradycardia
from ECG signals

Normal ECG Moderate/Severe
134 bpm 86 bpm 55 bpm

M S
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Prior work
Latent Space Representation for Bradycardia task

Vpos, o 0% 7y e
%" ool e .t
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Prototype L((f,9,h), X) =E(ho f,X) + Ar R(go f, X)
Classifier + A Ri(P1y ey Prms X) 5
Network Updated + Ao Ra(P1, ooy Prmy X) (2)
+ A\pg PDL(py, ...,
Prototype Diversity Loss 4 (pl pm)
1
Mg PDL(p1, ...,pm) = T
pd (p1 Pm) log(% ijl Min;sje(1,m) ||Pi — pjllg) +€

(D

1l ~— .
Ri(p1y ey Pm, X) =Ez'mzni€[l,n] ||Pj - f(ﬂ?i)”;, (3)
j=1

1l — .
R2(p1’ ""pmnX) =; Zmznjé[l,m] ”f(wl) —pjllg (4)
=1
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Prior work:
Latent Space Representation for Bradycardia task

o N RN S %
o ..- .-‘... . .' e ¥ ....'.
p%s o § b gY a5
- ~ :.- I. a
..z' oa o I.. 3 .'~ ..o..'\
* .28 .". ". - - p P >
. ..'.' .'\. St . Rad A
¢ “ Y St ® "‘l ool \'.l - M
i oS LTt p g s x A
| . g - . o ot
. § an i NET, M. % o™ o00 i
™o o0 "h.‘. el [X ™ %, - -
:' i o -.- '.." \‘.' .‘...‘ o ‘0
L] = .'o g &4\ . . s ] *
¥ ° S
. r . 2 !" s . ® ap b
' by . % e L
: ..
Ll l

Loss from 579 ..-. Yokt
Lietal 2017 U1y, T

(’\pd = 0)



Completed Work 2

@ TEXAS Prototypes for Time Series

Our work:
Latent Space Representation for Bradycardia task
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ECG: Bradycardia
Apd Accu. 5N, Ve

0 921+£0.1% 083+0.04 0.78+0.19
000 927+10% 0.86+0.07 0.839+0.19

le3 924+13% 087=+0.11 0.89+0.19
2¢3 93.1+04% 090 +0.04 1.00£0.00

f f
Prototype neighbor Prototype class

diversity N diversity Wc
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Maturation of Learned Prototypes Nearest Neighbor
REEE L | e o
B | ELe

A R R |
o i ettt i ?.'?'l"% ,

— -

s B —— B — MMM N
Epoch: 100 300 500 500
Acc.: 90.5% 91.5% 92.0%
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Decoded Representations of Prototypes

Severe (ID: 2646) L ans Pl Severe (ID: 2544)

. ’....‘..:. ....'.
o 08, - .: . FL AN '
3 . . ., ." - o ¥-

9
2
Prototype 2 . '4 p ? . EQ Ty Yon. ... Prototype 10

-
' 50 " '.'&: ":
X ". . .'1: o . . ':.-~-., .
: 1 s L
adts 'L o'-.;. . & st *. . s\ - R . 3
'. -t ":" .. -‘ 2
- . Y " v
. y n‘o. e > “ ..;.
v s 8
® o 8 . .
‘ iy
4

Severe (ID: 256) N | Norm‘(l[): 2477)




@TEXAS Spoken MNIST Performance Completed Work 2

accura
100+ 2
90.’-//.\‘
lws Lk Lobpedbar BO‘W
- person 70- .
Class. Task 2: Digits R
* Jackson + theo _ ' ? _ _
™ Thoown. O oM neighbor diversity
100+
90+
80+
701
601
501

0 500 1000 1500 2000

Apd
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Nearest Neighbor

Norm
I sec

/)l' "‘/‘/( / INN N
ll ll“ll(‘ l

"|‘ (LEP LR

Mild
6 sec

: Mod/Severe
Mauwmw 9 sec

HlefebacttaqaaneQ . o <adtladdo

Figure 7: Learned prototypes showcase the diversity of features
across classes that are important for understanding respiration mor-
phology while classifying apnea events. For this classification task,
we observe a variety of prototypes (at epoch 500) that learn vari-
ous cases with cessation of breathing (6 and 9 second gaps) and the
global features within the segment that are important for the model’s
classification. (8-prototypes, Apa = 500).

Learned Prototypes Nearest Neighbor

S L

M s Wt‘?‘v r‘ '

Figure 8: Learned prototypes from audio waveforms of spoken dig-
its by Nicolas from the FSDD (A4 = 500).

!(Six"

Ot&vcn'ﬁ
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‘The University of Texas at Austin

Spoken Digit Global Explainability Instance Explainability

Learned Prototypes Nearest Neighbor

“Two” 098 147 070 1.55
)

029 169 102 041

. GEBD

088 140 145 128 1.28

Mm-- ..\Y'F"‘“

Figure 8: Learned prototypes from audio waveforms of spoken dig-
its by Nicolas from the FSDD (A, ; = 500).
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The University of Texas at Austin

Onoe et al* learn human readable interpretable entity representations
that achieve high performance without additional learning (“out of the box”)

e —m living people

Entity
Embedding m sportspeople

tennis
E ‘t m american
american male

tennis players

Embedding Model
(Section 3)

»

o e )
Larry Fine O'Brien served for the m G
match in the third set before Context m place
Washington came charging back. (B cities
Mention 0 .

“Interpretable Entity Representations Through Large Scale Typing”
Yasumasa Onoe & Greg Durrett . Findings of EMNLP 2020
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Can we adapt |IERs for the Biomedical Domain?

*[ Glesatinib |* is a dual inhibitor of c-Met and SMO
that is under phase Il clinical trial for non-small cell lung cancer.



@ TEXAS Using BIERs

(2)

Entity label Classification for Cancer Genetics

Accuracy as a function of training data samples per class used
1.0

o
)

accuracy
o
(=]

@~ BIER-PMB dense NN

X
\

=y ' o ~t= BIER-PMB sparse NN
e . iy «s . PubMedBERT NN
0.2 -4 PubMedBERT finetune
5 10 25 50 75 100 200

samples per class

Figure 3: Results for the entity label classification task
under varying amounts of supervision.

Completed Work 3
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‘The University of Texas at Austin

(1) Named Entity Disambiguation (NED) on Clinical Entities.

Given a entity mention, context & set of candidate entities
identify which of the candidates is the true one linked to the mention.

Test Acc.

Model Dot Prod Cosine Sim
BIER-PubMedBERT (ours) 80.1 84.0
BIER-SciBERT (ours) 76.4 77.3
BIER-BioBERT (ours) 71.9 75.9
Onoe and Durrett (2020) 63.6 69.8 «——
Popular Prior 73.9 -

PubMedBERT (Gu et al., 2020) 77.6 -
SciBERT (Beltagy et al., 2019) 77.4 -
BioBERT (Lee et al., 2019) 77.9 -

Table 2: BIER zero shot test results vs Logistic Regres-
sion Baselines trained on task data for NED task
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(2)

The University of Texas at Austin

Entity label Classification for Cancer Genetics

Test Acc.
L2 Dist Dot Prod
Model Dense Sparse Dense Sparse

BIER-PubMedBERT 855 868 882 875
BIER-SciBERT 708 770 728 768
BIER-BioBERT 834 859 856 868
Onoe and Durrett (2020) 63.9 55.1 60.0 599
PubMedBERT 77.3 - 69.3 -
SciBERT 74.4 - 75.2 -
BioBERT 67.6 - 59.6 -

Table 3: Test accuracy on Cancer Genetics data using
a nearest neighbor classifier (k=1) without fine-tuning
based on sparse output or intermediate dense embed-
dings using L2 or Dot Product distance metrics.

Completed Work 3




@ TEXAS Using BIERSs

(2)

The University of Texas at Austin

Entity label Classification for Cancer Genetics

Test Acc.
L2 Dist Dot Prod
Model Dense Sparse Dense Sparse

BIER-PubMedBERT 855 868 882 875
BIER-SciBERT 708 770 728 768
BIER-BioBERT 834 859 856 868
Onoe and Durrett (2020) 63.9 55.1 60.0 599
PubMedBERT 77.3 - 69.3 -
SciBERT 74.4 - 75.2 -
BioBERT 67.6 - 59.6 -

Table 3: Test accuracy on Cancer Genetics data using
a nearest neighbor classifier (k=1) without fine-tuning
based on sparse output or intermediate dense embed-
dings using L2 or Dot Product distance metrics.

Completed Work 3




Interpretable

@ TEXAS De b U g g | N g W|t h B | E RS | ¢ Sparse Entity lllllllTllIllll

Representation
The University of Texas at Austin pres a

Embedding I

Model gt
Allows for error analysis at the component level asusunuzananan
to identify areas lacking in supervision -
. ]
and/or possible changes to the type system. 1

Mention and Context
Encoder (PubMedBERT)

AN N oW oW e
x A A SR - |

How well the model could have done 0 S O
had it known to fallback to

using the intermediate dense embedding
in cases where the sparse representation Test Acc.

led to an incorrect prediction Task Dense Sparse Combined A

NED 84.0 81.0 91.7 +7.7
ELC 875 882 91.9 +3.7

]
~
3
pa—
o<
—

Table 5: Results for both tasks showing improvements
that could have been achieved by combining intermedi-
ate dense and interpretable sparse output embeddings
generated by the same BIER-PubMedBERT model.
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(1) Named Entity Disambiguation (NED) on Clinical Entities.

Given a entity mention, context & set of candidate entities,
identify which of the candidates is the true one linked to the mention.



;[:EXA\S Debugglng Wlth BIERS Completed Work 3

Allows for error analysis at the component level
to identify areas lacking in supervision
and/or possible changes to the type system.



Interpretable

TEXAS Debugging with BIERs _ Searikein ey

‘The University of Texas at Austin

Embedding l element wise
Model sigmoid

Allows for error analysis at the component level asmmsmsununans
to identify areas lacking in supervision - EH cokmvee FH

—o—f
-

© a
8
— EEEEEN

B
u
2

1

and/or possible changes to the type system.

Mention and Context
Encoder (PubMedBERT)

([ [
x A A SR - |

How well the model could have done 0 S O
had it known to fallback to

using the intermediate dense embedding
in cases where the sparse representation Test Acc.

led to an incorrect prediction Task Dense Sparse Combined A

NED 84.0 81.0 91.7 +7.1
ELC 875 882 91.9 +3.7

Motivation for future work .

. . Table 5: Results for both tasks showing improvements
ond ev? lo PINg a dy namic approac h that could have been achieved by combining intermedi-
to maki Ng pred Ictions ate dense and interpretable sparse output embeddings
that is a function of model confidence. generated by the same BIER-PubMedBERT model.



context: The presence of activating TSH-R mutations has also been N .
demonstrated in differentiated thyroid carcinomas. Error anaIySIS using BIERS
At present, the percentage of such a modification is low,
unless referred to selected series of tumors.

mention: thyroid carcinomas

label: Cancer
Sparse NN model pred Dense NN model pred
thyroid esophageal carcinomas
(label: Organ) (label: Cancer)
Types Types
(‘'gland', 0.99965), (‘thyroid cancer', 0.99994),
('thyroid', 0.99932), ('squamous-cell_carcinoma’, 0.9998),
('rtt', 0.999), ('thyroid', 0.99925),
(‘head_and_neck_cancer', 0.99093), (‘cancer’, 0.99133),
('neck’, 0.97243), (‘gland', 0.99039),
('head_and_neck_anatomy', 0.93763), |('nitrous_oxide', 0.01965),
(‘head', 0.86131), (‘pancreatic_cancer', 0.00152),
('squamous-cell_carcinoma', 0.0024), |('neck’, 0.00023),
('ingredient’, 0.00078), (‘thyroid_neoplasm’, 0.00019),
('thyroid disease', 0.00047), ('rtt', 0.00014),
('nitrous_oxide', 0.00034), (‘endocrine diseases', 2e-05),
(‘thyroid cancer', 0.0003), ('head', 1e-05),
(‘endocrine diseases', 0.00019), ('malignancy’, 1e-05),




context:

mention:
label:

The presence of activating TSH-R mutations has also been
demonstrated in differentiated thyroid carcinomas.

At present, the percentage of such a modification is low,
unless referred to selected series of tumors.

thyroid carcinomas
Cancer

Error analysis using BIERS

Sparse NN model pred

Dense NN model pred

Counterfactual
Sparse NN model pred

thyroid esophageal carcinomas medullary thyroid carcinoma
(label: Organ) (label: Cancer) (label: Cancer)

Types Types Types

(‘'gland', 0.99965), (‘thyroid cancer', 0.99994), (‘cancer', 0.99994),

('thyroid', 0.99932), ('squamous-cell_carcinoma’, 0.9998), |('rtt', 0.99964),

('rtt', 0.999),
(‘head_and_neck_cancer', 0.99093),
(‘'neck’, 0.97243),
('head_and_neck_anatomy', 0.93763),
(‘head', 0.86131),
('squamous-cell_carcinoma’, 0.0024),
('ingredient’, 0.00078),

('thyroid disease', 0.00047),
('nitrous_oxide', 0.00034),

(‘thyroid cancer', 0.0003),

('endocrine diseases', 0.00019),

('thyroid', 0.99925),

(‘cancer’, 0.99133),

('gland’, 0.99039),
('nitrous_oxide', 0.01965),
('pancreatic_cancer', 0.00152),
('neck’, 0.00023),
(‘thyroid_neoplasm’, 0.00019),
('rtt', 0.00014),

(‘endocrine diseases', 2e-05),
('head', 1e-05),

('malignancy’, 1e-05),

(‘'nitrous_oxide', 0.99907),
(‘esophagus', 0.00159),

(‘endocrine diseases', 0.00013),
(‘Pancreatic_cancer', 1e-04),
(‘gland', 4e-05),
(‘'squamous-cell_carcinoma', 2e-05),
('neck’, 2e-05),

('thyroid cancer', 1e-05),
(‘head_and_neck_anatomy/', 1le-05),
(‘gastrointestinal cancer’, 1e-05),
(‘head_and_neck_cancer', 0.0),
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Word-based skip-gram model Anchor context model Link graph model
| , | T
Aristotle was a philosopher Arlstotl was a philosopher ;o Anstoﬂe KRg _Avncenna £
a,_AANAN ped SR ‘
The neighboring words of each word are The neighboring words of a hyperlink The nelghborlng entltles of eaéh entlty in
used as contexts pointing to an entity are used as contexts Wikipedia’s link graph are used as contexts

Figure 3: Wikipedia2Vec learns embeddings by jointly optimizing word-based skip-gram, anchor context, and link
graph models.



TEXAS KVQA Task and Motivation proposed Work 1

Existing solutions to KVQA (largely):

- Lack in-process explainable techniques
- Are entity centric and could benefit from grounding
- Treat the image modality as a sequence of region features
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The University of Te

EBERT “concat” method.
E-BERT(ent) -> mapper(WikiVec(ent)) + “/” + BERT(ent)

LXMERT

Vision
Output

T
ey

Cross-
@ Modality
Output

....................
A woman
W |
ioriding a bike |
twithadogina |
|

basket,

Language
Output

Idx Emb

Language Encoder Cross-Modality Encoder

+ Entity Enhanced “EBERT” (Poerner, et al EMNLP 2020 ) over Language
maps Wiki knowledge graph embeddings to BERT space (knowledge injection)

Learn map W during training At Inference map Wiki ents to Bert viaW

: dBERT
Y [[Wéwikipedia(®) — EBERT()][3 EE-BERT © LEnt — R
z€LlwpNLword SE_BERT(a) = WgWikipedia(a)
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KVQA Existing Solution

Proposed Work 1
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Table 3: KVQA results by question type accuracy (top half) and confidence (bottom 4 rows of unconstrained logits). Not shown
NERper has highest accuracy for spatial question types (31.42). Average E-BERT refers to averages over NERper, NERagro and
KVQAmeta for each link type (as is, links, noisy)

multi multi multi Acc/
Model Type 1-hop  hop rel bool entity cmp spatial subtr count inter Conf
Percent with 81.80 18.20 53.58 24.63 2496 16.81 15.22  12.07 7.89 1.82 o
Question = 4489 5798 4740 86.37 72.14 81.67 28.12 19.68 84.62 65.00 47.27
+ Caption - 46.36 6547 51.57 87.21 7246 80.91 29.17 1933 85.03 70.29 49.84
KVQAmeta  links 48.87 70.61 5543 86.69 73.68 82.50 31.14 22.21 84.82 71.47 52.83
KVQAmeta  noisy 48.88 71.55 56.14 86.63 73.57 82.15 31.14 21.23 85.70 70.00 53.01
Average E-BERT 4738 67.48 53.04 86.24 7298 81.85 30.48 20.58 85.15 68.46 51.04
Best E-BERT - Caption 2.52 6.08 4.57 | -0.13 1.22 1.59 2.25 2.88 0.67 1.18  3.17
Question = -0.01 1.32 0.05 3.20 2.21 2.89 =168 =179 9.97 1.76  0.23
+ Caption = 0.50 2.70 1.00 4.26 3.15 3.85 -1.18  -1.83 5.97 3.52 0.90
KVQAmeta  links 1.08 4.26 1,99 4.65 3.54 4.16 -0.71  -1.52 6.86 354 1.66

KVQAmeta  noisy 1.52 484 248 5.87 434 502 -044 -151 731 524 2.12




WHAT STARTS HERE CHANGES THE WORLD

Table 6: KVQA entity knowledge injection explainability on split 1 for various entity span sets. For instance, 11.48 % of inference
questions have E-BERT entities in their top 5 tokens for the NERper plain entity set model and overall 78% of questions in that
entity set have E-BERT injected entities.

bimodal generic transformer attention Qs w/
Model Type | topl top5 topl0 | topl top5 topl0 | EBERT
NERper asis | 0.66 1148 31.23 | 0.29 6.13 22.64 .78
NERper links | 0.32 8.67 3332 | 039 6.90 25.24 19
NERper noisy | 0.13 4.75 21.62 | 0.73 7.11 23.38 .94
NERagro asis | 031 4.93 19.60 | 0.38 7.41 28.32 21
NERagro links | 0.56 14.75 44.46 | 1.10 18.52 50.02 91
NERagro noisy | 1.30 20.53 44.94 | 143 18.23 40.95 7
KVQAmeta asis | 0.12 2.77 8.52 0.18 6.30 15.56 .87
KVQAmeta links | 0.39 426 1296 | 4.06 1257 23.80 .95
KVQAmeta noisy | 0.15 5.15 23.75 | 0.42 10.02 36.19 99
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Thanks for listening!

Code/data: https://github.com/diegoolano/kbvga

Pre-print: https:/arxiv.org/abs/2112.06888

www.diegoolano.com
Twitter: @dgolano



https://github.com/diegoolano/kbvqa
https://arxiv.org/abs/2112.06888
http://www.diegoolano.com

@ TEXAS ItsIRL - Global Prototypes
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Positive class prototypes
1)  Run the decoder fine-tuned model over the task training data.
2) Gather all correctly predicted instances for each class,
sum their interpretable entity type layer representations & normalize them

vec—min(vec)
max(vec)—min(vec)

Positive class prototype =

where vec is the sum of entity type layers for a given class.

Gene or Cell Cancer Simple Organism Multi-tissue Tissue
gene product chemical structure
1 protein cell disease ingredient taxonomy blood tissue
2 ingredient elementary  neoplasm acid mammals angiology cell
particle in 1758
3 human human cells oncology rtt humans soft tissue human body
4 gene battery tissue who essential tool-using nephron connective
medicines mammals tissue
5 coagulation gene abnormality chemical anatomically blood endocrine
compound modern humans vessel system

Table 3: Top Entity Types for 7 most frequent positive Prototype class embeddings
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Class Term Rules Inclusion/Exclusion Terms in Set
Cell [cell] 357
Cellular component [cell] 357
Cancer [cancer, neoplasm] 155

[’ gene’, 'gene ’, ’ genes’, ’genes )]
& ) = A ] ) ) 434

not in ['generation’, 'general’]

Simple chemical [ chemical, chemical | 80

[ organ’, ’organ ’, ’organism’]

Gene or gene product

Organiam not in [‘organization’] L2

Organism substance [ orfgan”, ’orgfm ,f ’o,rganism’] 172
not in ['organization’]

Organism subdivision [ organ,’, ’orgfm ,f ’o,rgamsm’] 172
not in ['organization’]

Oranni [ organ,’, ’org?m ’3 ’o,rganism’] 179
not in [‘organization’]

Tissue [ tissue, tissue | 15

Multi-tissue structure [ tissue, tissue | 15

Amino acid [ amino, amino , amino acid] 22

Pathological formation [pathological] 3

Immaterial anatomical entity [anatomical , anatomical, anatomical] I

Developing anatomical structure [anatomical , anatomical, anatomicall i

Anatomical system [anatomical , anatomical, anatomical] L1

Table 6: Terms used to create coarse Class specific Entity Type sets
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ItsIRL - Type

Digging Into the Results:

Manipulation

Technique % of Errors Best Method
Corrected

Promoting 50.0% 11 out of 15

BothP & F 49.3% 10 out of 15

Fixing 28.5% 6 out of 15

Best of 3 61.0% 15 out of 15

Obtained using noisy, non-expert term sets.

True Predicted Errs ' BOTH PRMT FIX Best%
Chemical Gene 65 64 48 59 98.4
Cell Cancer 41 31 41 0 100
Cell Gene 34 34 34 0 100
Multi-Tis Tissue* 22 0 O 7 318
Gene Chemical 17 3 3 10 58.8
Organ Tissue 16 12 10 12 75
Cancer Cell 16 0 14 0 87
Gene Organism 15 6 0 15 100
Cell Chemical 14 14 14 4 100
Amino Gene 14 14 14 14 100
Pathol Cancer 14 0 0 0 0
Organism Cell 14 0 0 0 0
Organism Gene 12 0 2 0 16.7
Organ Multi-Tissue 10 0 1 0 10
Multi-Tis Cancer 10 0 0 0 0
Chemical Amino 10 10 10 10 100
Cancer Org. Sub. 10 10 10 0 100
Cell Tissue 10 10 10 5 100
Cell Celu Comp* 10 10 10 0 100

Raw Total 592 292 296 169 361

Percent 100 49.3 50 28.5 61
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B |ogits ™ (original prediction)
e fix logits

BN promote logits

BN both logits

N » (o)} (o]

Example on
Single Error Case

True Label: Cancer
Predicted: Cell

0
01
[4
71

Gene

Results after

Manipulation Technique Cell
1. Fixing -> Gene

2. Promote -> Cell

3. Both -> Cancer Cancer

Chemical

Organism
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We propose Intermediate Entity-based Sparse Interpretable Representation
Learning (ItslRL), a pre-trained which provides an intermediate interpretable
layer whose decoded dense representation output can be fine-tuned and
used for performance on downstream tasks.

Empirically we show the model outperforms prior IERs work and is
competitive with dense language models on two biomedical tasks.

To demonstrate the utility of the kind of interpretability afforded by ItsIRL, we
propose a counterfactual entity type manipulation analysis which allows
for modeling debugging. Using coarse class type sets, we show this
technique can allow ItsIRL to surpass performance against dense
non-interpretable models.

We finally show how combining entity types over classes on the training set
to create positive and negative class prototypes can be used to explain task
specific global structure and semantics learned by our model.
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Future Research

UNICEN Predicting Gender Bias

Universidad Nacional del Centro | ﬂ J U d |C|a | prOCeed | ﬂ gS (AZU |)

de la Provincia de Buenos Aires

Dr. Maria DeArteaga at UT Austin

e |Imbalanced task at the document and sentence level
studying human bias and not learned biased representations.

e Setting up infrastructure for the data, sequence tagging,
labeling and human in the loop feedback for iterative
learning of spanish language model

e Giving workshops about diverse topics in Al/NLP
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Mentions & Model Memories for improved Entity Learning,
Retrieval & Reasoning over different domains

Mentions as first class citizens U —. e e s

...... HontaonMemory TransformerBlock :
150M Wikipedia entity mentions MemKey Memvalue : .

: [Perseus] was a great Greek hero...g— —: () : ‘ | ’ ‘ ‘ 1 ‘ J ‘ ‘ ’, ’ ‘

: Perseus was a great [Greek] hero ... — — ) P - - - :

- : Pre trained e N P MemoryAttentionLayer :

- [Medusa] was slain by Perseus  :—|MentionEncoder [ /) )

: ... Medusa was slain by [Perseus] —— — ) L ‘ ‘ ﬁ

[H Simpson] is a fictional character ...— — | ]

e nnnnnnnnnImmmmmmmm™ T ( ................. F ] ThitialTransformerelock

What is the [nationality] of the [hero] who killed [Medusa]?
e Mention Memory: incorporating textual knowledge
into transformers through entity mention attention. ICLR 2022
e MOLEMAN: Mention-Only Linking of Entities with a Mention Annotation Network - ACL 2021
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Mentions & Model Memories for improved Entity Learning,
Retrieval & Reasoning over different domains

1. Application of Mention and Memory techniques to
different tasks,
specific product domains, and possibly expanding to
multimodal entity centric settings

2. How can explainability methods can be leveraged
to guide them (via memory banks) and
explain their internal reasoning.
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Symbolic Knowledge Distillation and Human Critics for
KB creation, model learning and explanations.

z ~ GPT-3 A

175B Parameters &Symbolic Knowledge

General Model
O CRITIC

Fine-tuned RoBERTa
filters for quality *

ATOMIC10X

A

6.5M Examples . *?f _:
Commonsense KG -~

COMETdistil
1.5B Parameters o
Commonsense Modelw
Yejin Choi's group at UW/Ai2
e Symbolic Knowledge Distillation from General Language Models to Commonsense Models
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Symbolic Knowledge Distillation and Human Critics for
KB creation, model learning and explanations.|
Evaluation

Stage 1: Over-generation Stage 2: Filtering
, Explanation Candidate Generation \ ' Acceptability Prediction \ l \
greedy L [top score _,g) Sulachod
Prom = stochastic
Ingtagf:es with GPT-3 stochastic __: ) - > ¥ s
Author-Written ™|  DaVinci . TO-based & Explanation-
uthor riccen aVvinci stochastic Filter Model
Explanations - — / Level
(See Table 2) stochastic i, E

in Acceptability Lat : Ground Truth (Test): 3/3 crowd labels agree

Figure 1: Illustration of our overgeneration + filtration pipeline approach to produce human-acceptable generated
explanation for CommonsenseQA and SNLI instances (see examples in Table 1). Authors of this work write
explanations to prompt GPT-3, generating five explanations per instance during Stage 1. An acceptability filter,
trained with human binary acceptability judgments, determines which of these generated explanations as plausible.
Our metrics evaluate the predicted ratings both at the explanation and at the instance level.

e Reframing Human-Al Collaboration for Generating Free-Text Explanations (2021)
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Symbolic Knowledge Distillation and Human Critics for
KB creation, model learning and explanations.

Stage 1: Over-generation Stage 2: Filtering Evaluation
, Explanation Candidate Generation \ ' Acceptability Prediction \ l \
greedy L [top score «E, Mkhiasiad
Prom — stochastic
Ingtagf:es with GPT-3 stochastic __: s’ . -\F .
Author-Writt — DaVinci - TO-based ¥ Exp|anation_
uthor riccen aVvinci stochastic Filter Model
Explanations —> — / Level
(See Table 2) stochastic i, E

in Acceptability Lat : Ground Truth (Test): 3/3 crowd labels agree

Figure 1: Illustration of our overgeneration + filtration pipeline approach to produce human-acceptable generated
explanation for CommonsenseQA and SNLI instances (see examples in Table 1). Authors of this work write
explanations to prompt GPT-3, generating five explanations per instance during Stage 1. An acceptability filter,
trained with human binary acceptability judgments, determines which of these generated explanations as plausible.
Our metrics evaluate the predicted ratings both at the explanation and at the instance level.

e Reframing Human-Al Collaboration for Generating Free-Text Explanations (2021)
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Symbolic Knowledge Distillation and Human Critics for
KB creation, model learning and explanations.

z ~ GPT-3 A

175B Parameters &Symbolic Knowledge

General Model
O CRITIC

Fine-tuned RoBERTa
filters for quality

A

ATOMIC10X

6.5M Examples . *?f _:
Commonsense KG -~

COMETdistil
1.5B Parameters o
Commonsense Modelw
Yejin Choi's group at UW/Ai2
e Symbolic Knowledge Distillation from General Language Models to Commonsense Models



Future Research

Symbolic Knowledge Distillation and Human Critics for
KB creation, model learning and explanations.

Combining this single aspect symbolic knowledge distillation and
human filtering method with other in-process techniques to

1) generate knowledge bases for specific domains/tasks and
learning models on top of them or

2) train explainer models for specific tasks/domains
data augmentation for learning more robust models

Multi-modal setting where a model generates “constrained” images
explaining the behavior of different layers and/or the model as a whole
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Improving accuracy, robustness and transparency for multi-modal models

Study how the self supervised, teacher-student Data2Vec framework
could be expanded and made more transparent,

Both in the modalities they focused on (text, speech and vision), but
in particular for text/graph and text/tabular modalities,
(common settings for business with less general research focus)

Adding in-process explainability to better understand the model,
possible use of approximate influence functions from pre-training
during inference time?

“Data2vec: A General Framework for Self-supervised Learning in Speech, Vision & Language” - 2022
“Benchmarking Multimodal AutoML for Tabular Data with Text Fields” NeurlPS 2021
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Example Query: George Harrison's

George Harrison George Harrison

gettyimages
Paui Mounce - Carbis

Q2643 Q5540278
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Interpretable
Sparse Entity INEEEEEEEEEEEE

Representation T
Embedding é element wise
MOdeI I sigmoid

EEEEEEEEEEEEEE
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dense i _@ >l ] 68k Type
P = Embeddmgs
| IIIIIIIIIIII
T ...... 68,304
Mention and Context
Encoder (PubMedBERT)

[CLS] mention [SEP] context [SEP]
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Training Biomedical IERs

Interpretable
Sparse Entity INEEEEEEEEEEEE

Representation T
Embedding é element wise
MOdeI I sigmoid

ENEEEEEEEEEEER
A A A A AAAAAAAAAADN
| EEEEEEEEEEER
| [ ] |
dense i _@ >. | 68k Type
rec M Embeddmgs
IIIIIIIIIIII

...... 68,304

Mention and Context
Encoder (PubMedBERT)

D T
—> )ty -log(ti) +
i

[CLS] mention [SEP] context [SEP]

Training loss:

Independent sum

of binary cross entropy losses
over all all entity types T

over all training examples D.

(1 —ti;) - log(1 — ti5),
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Application to Large Language Models ( GPT3, Dall-E2, Imagen, etc)

Work around prompting LLMs and using smale-scale manual labeling
to learn in-process critic models that filter & improve quality of generated texts.
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Application to Large Language Models ( GPT3, Dall-E2, Imagen, etc)

Work around prompting LLMs and using smale-scale manual labeling
to learn in-process critic models that filter & improve quality of generated texts.

> ~ GPT-3 %

175B Parameters LLMs for automating knowledge base

O General Model istillati creation in commonsense reasoning
CRITIC
= (West et al 2021)

Fine-tuned RoBERTa
filters for quality * Symbolic Knowledge Distillation from General

Language Models to Commonsense Models

ATOMIC10X
6.5M Examples g —5
Commonsense KG -

CoOMETdistil
1.5B Parameters - /
Commonsense Model W
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Application to Large Language Models ( GPT3, Dall-E2, Imagen, etc)

Work around prompting LLMs and using smale-scale manual labeling
to learn in-process critic models that filter & improve quality of generated texts.

Stage 1: Over-generation Stage 2: Filtering Evaluation
[ Explanation Candidate Generation \ ‘ Acceptability Prediction ] ’ \
greedy L [top score _,EI Euliaatak
Prompt - stochastic b -\F \
Instances with GPT-3 stochastic
Author-Written ™ inci — | TO-based > LET™ Explanation-
uthor-Written DaVinci stochastic Filter Model
Explanations - > — / Level
(See Table 2) stochastic i E

an Acceptability Labeling Ground Truth (Test): 3/3 crowd labels agree

LLMs classifiers where high quality explanations are generated in-process

(Wiegreffe., 2022)
Reframing Human-Al Collaboration for Generating Free-Text Explanations



W TEXAS Types of Explainable Al XAl types

The University of Texas

Post Hoc explanations

Feature Attribution: which features contributed most to a model’s output
- Path Integrated Gradients (IG)
- Shapley Additive Explanations ( SHAP )
- Interpretability with Differential Masking

Influential examples: which training data most influenced a model’s output
- Influence Functions
- Representer Point Selection for Explaining Deep Neural Networks

Counterfactuals: minimal change that would have led to a different output

BERT probing: assess how well a LM encodes semantic/syntatic properties of
language by evaluating (“probing”) on downstream tasks


https://arxiv.org/abs/1703.01365
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

TEXA§ Post HOC Opeﬂ |SSL,IeS Challenges / Motivations

The University of Texas at Au:

Issues with Post Hoc secondary model explainers

Feature importance/saliency methods
- Need Baselines (Shap/1G)
- Are local/linear approximations of the actual model faithful explanations?
- Can we interpret Attention weights as explanations?

Influence functions:
-  Expensive to compute
- Correlation to true influence for deep architectures is questionable

Counterfactuals:
- Semantic distance and meaning with text?

BERT probing:
- Don't generalize past probing tasks and don't “explain” model decisions

Explaining a network’s behavior in a way that it wasn't expressly trained for can
be problematic & makes assumptions that often do not hold (Chen, Rudin 20)
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Issues with Post Hoc secondary model explainers

Feature importance/saliency methods
- Need Baselines (Shap/1G)
- Are local/linear approximations of the actual model faithful explanations?
- Can we interpret Attention weights as explanations?

Influence functions:
-  Expensive to compute
- Correlation to true influence for deep architectures is questionable

Counterfactuals:
- Semantic distance and meaning with text?

BERT probing:
- Don't generalize past probing tasks and don't “explain” model decisions

Explaining a network’s behavior in a way that it wasn't expressly trained for can
be problematic & makes assumptions that often do not hold (Chen, Rudin 20)
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In-Process

Prototypes: learn “prototypical’ representations
-  Deep Learning for Case-Based Reasoning through Prototypes

Deep k-NN models: utilize layer representations as additional “clustering” features
-  Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust DL

Concept based Models: layer specific additional task loss with supervision
- Concept bottleneck models
- On completeness-aware concept-based explanations in deep neural networks

Retrieval as Explanation: for tasks involving entity retrieval as an intermediate step
- REALM: retrieval-augmented language model pre-training
- Entities as experts: Sparse memory access with entity supervision

Feature Importance as an auxiliary loss during training:
- Incorporating Priors with Feature Attribution on Text Classification

Require access and modifications to the underlying model ....
which is fine for critical applications!
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Completed work

Completed Work ( Pre-Proposal )

Learning Dense
Representations for Entity
Retrieval. (CoNLL 2019)

Constructed a dual mention-entity encoder that learns
dense representations for efficient neural Entity Retrieval
with an in-process, iterative hard negatives procedure

for model learning and inference time inspection.

Deep Classification of
Time-Series Data with
Learned Prototype
Explanations. (ICML 19)

Adapted a prototypical autoencoder classifier to be
compatible with time series data and allow for

tunable prototype diversity leading to improved accuracy
and global and instance level explanations.

Biomedical Interpretable
Entity Representations.
(ACL-1JCNLP 2021)

Learned a distantly supervised entity type system and data
set for use in training a Biomedical Interpretable Entity
model whose representations exist in a semantically
meaningful vector space & whose predictions may be
interpreted and diagnosed with an oracle method.
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Completed Works

Completed Works - Post Proposal

Intermediate Entity-based
Sparse Interpretable
Representation Learning
(under submission)

Extended BIERSs to allow for task-centric fine tuning on
pre-trained representations without breaking the
semantics of our learned entity type space and introduced
two explainable diagnostic methods, automated entity
type manipulation & entity type based class prototypes, for
fine-grained model debugging & global model
semantics interpretability.

Improving and Diagnhosing
Knowledge Based

Visual Question Answering
via Entity Enhanced
Knowledge Injection
(WWW 22)

Analyzed how efficient, entity based knowledge
injection via E-BERT during fine tuning affects an existing
VQA model LXMERT on the task of knowledge-based VQA
in terms of accuracy & bi-modal explainability.
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M1 (Q) M2 (Q+C) M3

KVQAmeta Europe =9

BM-GAE EXPLANATION

Plain: Europe =11 CAPT: North America=01 probs:[4.14, -3.58, -4.1]
26253 4, probs:[0.08, -1.59, -1.92] probs:[1.99, -2.63, -2.89] Preds:['Europe’, 'North America’]
Q:[CLS] in which continent was the person in Preds:['Europe’, 'Asia’] Preds:['North America’, 'Asia’] ['Asia’, "Africa’]
the image born ? civil war photograph of ['North America’, 'Africa'l ['Oceania’, 'South America']
nelson [SEP]
Toks:('knute’, 1.0)
AEurope Toks:('continent’, 1.0) Toks:('war’, 1.0) (*<ebert>Knute Nelson</ebert>', 0.795)
Qtype:['multi-hop’, 'Multi-Relation’] (‘was’, 0.1789) (‘nelson’, 0.8931) (‘continent’, 0.3186)
('[SEP]', 0.1776) (*civil', 0.6977) (‘r,0.1777)
GroundEnts:Knute Nelson ('in', 0.1662) (‘the’, 0.0671) (‘war’, 0.1519)
(‘which’, 0.1659) (‘the’, 0.0545) **Ent set:['Knute Nelson']

Figure 2: Two examples of KVQA questions where E-BERT is beneficial for KVQAmeta noisy entity set model. The rows show
visual and token explanations for BM-GAE over the question/text (left column) and the 5 variants “Question”, “+Caption",
NERagro, NERper and KVQAmeta we explore . Next to each models name is their prediction and whether this top1 prediction
is correct (1) or not, and then whether the correct answer exists in the top 5 predictions of the model which are additionally
shown along with their logit values. Below that we see the top 5 most important tokens found by the explanation method
followed by the set of Entities used for possible knowledge injection



