PREDICTING A POLITICIAN'S PARTY AFFILIATION FROM A PHOTO

Diego Garcia-Olano, Amin Anvari, Farzan Memarian

How good are you at judging a politician by his/her cover?

DEMOCRAT REPUBLICAN

DEMOCRAT REPUBLICAN

DEMOCRAT REPUBLICAN

DEMOCRAT REPUBLICAN

DEMOCRAT REPUBLICAN

DEMOCRAT REPUBLICAN

DEMOCRAT REPUBLICAN

DEMOCRAT REPUBLICAN

diegoolano.com/demorepu/

ABOUT Baseline: 65.52 %

GUESS REPUBLICAN OR DEMOCRAT

DEMOCRAT REPUBLICAN 💿

GREG BURDWOOD (DEMOCRAT - NH)

DEMOCRAT REPUBLICAN

SYLVIA B LARSEN (DEMOCRAT - NH)

DEMOCRAT REPUBLICAN 💿

BULLOCK, DONNA (DEMOCRAT - PA)

SCOTT GUNDERSON (REPUBLICAN - WI)

DEMOCRAT REPUBLICAN

BRUCE CHANDLER (REPUBLICAN - WA)

DEMOCRAT REPUBLICAN O

ANITA JUDD-JENKINS (REPUBLICAN - KS)

DEMOCRAT REPUBLICAN

JOHN CHARLES EDWARDS (DEMOCRAT - AR)

VINCENT J. PIERRE (DEMOCRAT - LA)

DEMOCRAT REPUBLICAN

YOUNG, PAT (DEMOCRAT - MD)

DEMOCRAT REPUBLICAN

CHECK ANSWERS

DEMOCRAT REPUBLICAN

SCORE: 5/10

ODEMOCRAT REPUBLICAN

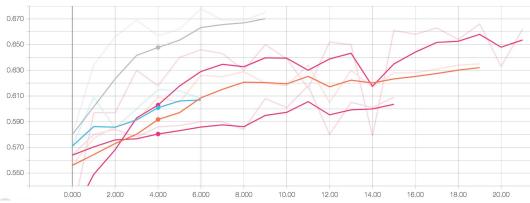
PLAY AGAIN?

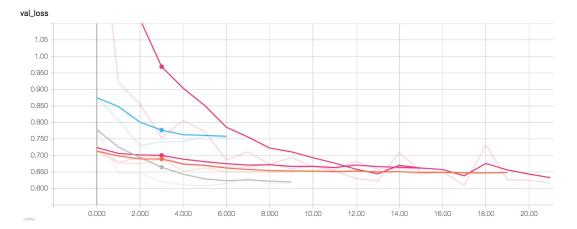
after 5000 responses, the average = 65%

Dataset: color images for **11,000 US State Level** congress people along with their name, state, and party affiliation

Models:

- VGG19, VGG16, inceptionV3, Xception, ResNet, Inception-ResNetV2 (ImageNet)
- VGG-Face (**Deep Face data set**) 2.6 million face images.





model	learning rate	test accuracy
inceptionv3	0.0009	0.692
resnet	0.0001	0.691
vgg19	0.001	0.670
vggFace	0.00009	0.677
xception	0.0009	0.657

val_acc

models	test acc	repub acc	dem acc	
inv3,res	0.697	0.791	0.582	
inv3,res,v19	0.707	0.791	0.605	
inv3,res,v19,xcpt	0.721	0.784	0.641	Final Ensemble Model 72%
inv3,res,v19,xcpt,vface	0.722	0.798	0.629	

models	test acc	repub acc	dem acc	
inv3,res	0.697	0.791	0.582	
inv3,res,v19	0.707	0.791	0.605	
inv3,res,v19,xcpt	0.721	0.784	0.641	
inv3,res,v19,xcpt,vface	0.722	0.798	0.629	-

DEMOCRATs with high probability

Final Ensemble Model 72%

REPUBLICANs with high probability

INCORRECTLY PREDICTED AS **DEMOCRAT**

INCORRECTLY PREDICTED AS **REPUBLICAN**

COCO Dataset (less than 100 labels)

COCO Dataset (less than 100 labels)

COCO Dataset (less than 100 labels)

labelalltie7646 (71.6%)person10641 (99.7%)

republican 4618 (<u>78.3%</u>) 5884 (99.7%)

democrat 3028 (<u>63.4%</u>) 4757(99.6%)

9000 labels in dataset

YOLO9000 - mostly noisy (ie low probability) labels and high probability labels were of little interest "whole", "neckwear" followed by "object", "instrument", "worker", and "commodity"

1000 labels in ImageNet

ResNet - requires very low probability cut off to get varied results

some labels are **always wrong** no matter their probability, "bulletproof vest", "military uniform", "oboe", "wig", "bassoon" always in **top 15 detected objects**

98% bulletproof

96% military unif

1000 labels in ImageNet

ResNet - requires very low to prob cut off to get varied results

almost always correct even if their probability is very low, "cowboy hat", "flagpole", "bolo-tie", "bow tie", and "windsor tie", (cowboy hat / flag pole very rare)

5% cowboy hat

7% flagpole

/ 61 out of 32,000 21

1000 labels in ImageNet

ResNet - why manual verification is needed

1000 labels in ImageNet

ResNet - why manual verification is needed

Boa Constrictor (30%)

Neck Brace (96%)

Fake "new" politicians

All Politicians (64 x 64)

All Politicians (64 x 64)

"male whitening"

All Politicians verification (via Nearest Neighbors)

All Politicians (64 x 64)

http://diegoolano.com/demorepu/generated/images_by_epoch_all_politicians.html

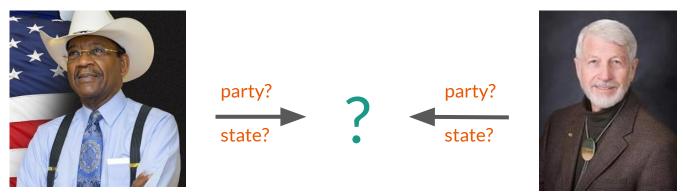
Republicans (64 x 64)

Democrats (64 x 64)

All politicians (128 x 128) = 4 days training vs 1 day for prior GANs

Conclusions:

- 1) Constructed 11 thousand color images data set of politicians with meta data
- 2) Gathered 5000 human responses to establish baseline of 65%
- 3) Final model with 72% accuracy for predicting party affiliation from image alone



- 4) Use of object detection systems to better understand test results
- 5) Use of GANs to generate new politicians

THANKS !